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As mentioned in the attached report, we have tried to leverage our work on a neurally motivated model of
reflexive reasoning to design a real-time large-scale knowledge based reasoning system. We have completed
a pilot implementation on a CM-5 and experimented with large randomly generated knowledge bases. The
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identifying applications of interest to the military that would benefit from the capabilities of such a real-time
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Progress Summary

A spatio-temporal system for recognizing handprint digit strings was designed and trained to recognize
handprinted ZIP codes. The results of our work on a biologically motivated model of reflexive reasoning
were used to implement a pilot system for performing rapid reasoning using very large knowledge bases. The
pilot system which runs on a 32 node CM-5, can encode over 300,000 items and respond in less than 500
msec. to queries requiring reasoning upto a depth of eight.

Progress Report

We have continued our investigation of the representational capabilities of spatio-temporal networks and
their application to reflexive reasoning and pattern recognition. These network use recurrent connections
and variable delay links. In addition to the firing rate, the firing time of cells relative to other cells, carries
representational significance in these models (the synchronous firing of cells being an important special case).

We finished the design of a spatio-temporal model for handprint digit string recognition. The model
was trained to recognize handprinted ZIP codes. In addition to the obvious practical significance, the work
furthers our understanding of spatiotemporal models for pattern recognition and demonstrates that the
approach offers a natural solution to the problem of shift-invariance, enables a pattern recognition system
to handle arbitrarily long inputs and partially solves the segmentation/recognition dilemma. In earlier work
we had developed a system for isolated digit recognition and done some preliminary work on extending the
system to connected pairs of digits. The additional work extended the system to do full word (ZIP code)
recognition. The results of this work are described in an article submitted to the journal Connection Science
for publication and was the subject of Thomas Fontaine's PhD dissertation (December 1993).

We are also leveraging the results of our reflexive reasoning system based on temporal synchrony to build
a system for performing rapid reasoning using very large knowledge bases. The aim is to build a system
whose response time is fast enough to support inferencing for a real-time speech understanding system. This
means being able to respond to retrieval as well as inferential queries within a few hundred milliseconds. We
have a pilot implementation on a 32 node CM-5 that can encode over 300,000 rules, facts, and types and
respond to queries whose response requires inferences that are 10 deep in about 500msec. The effectiveness d
of the implementation can be directly attributed to the constraints on representation and inference suggested -
by the use of temporal synchrony for expressing dynamic bindings. The result of the CM-5 implementation 1
are described in the enclosed technical report (ICSI TR-94-031). This research is the topic of D.R. Mani's
PhD dissertation.

Results of work on our model for reflexive reasoning using temporal synchrony have appeared in Behavioral
and Brain Sciences and Connection Science journals and in the 1993 International Joint Conference on
Artificial Intelligence. -
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I have begun investigating a possible solution to the "catastrophic interference problem". In brief, the
problem is this: If a network that has already been trained to solve task A is trained to solve task B, it
forgets the solution to task A unless it is simultaneously retrained on task A. This problem is an inherent
weakness of most incremental learning algorithms and is perhaps the biggest impediment in the development
of scalable learning systems. The solution being investigated is as follows: Initially the system focuses on
a small number of categories. After it learns these categories, it tries to identify which features formed
in the "hidden layer" play a crucial role in the recognition of these categories. The system freezes these
crucial features and as a result they cannot be obliterated during subsequent learning (although they may
undergo some fine tuning). These frozen features are however, available to other structures that are learned
subsequently to recognize other categories. An important claim is that the set of features will gradually
stabilize and learning new categories will get progressively easier and involve combining existing features in
the appropriate manner. These ideas are being investigated in the context of training using spatio-temporal
to recognize digit strings.
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Abstract: Human agents draw a variety of inferences effortlessly, spontaneously, and with remarkable efficiency - as though these
inferences were a reflexive response of their cognitive apparatus. Furthermore, these inferences are drawn with reference to a large
body of background knowledge. This remarkable human ability seems paradoxical given the complexity of reasoning reported by
researchers in artificial intelligence. It also poses a challenge for cognitive science and computational neuroscience: How can a system
of simple and slow neuronlike elements represent a large body of systemic knowledge and perform a range of inferences with such
speed? We describe a computational model that takes a step toward addressing the cognitive science challenge and resolving the
artificial intelligence paradox. We show how a connectionist network can encode millions of facts and rules involving n-ary predicates
and variables and perform a class of inferences in a few hundred milliseconds. Efficient reasoning requires the rapid representation
and propagation of dynamic bindings. Our model (which we refer to as sHnrri) achieves this by representing (1) dynamic bindings as
the synchronous firing of appropriate nodes, (2) rules as interconnection patterns that direct the propagation of rhythmic activity, and
(3) long-term facts as temporal pattern-matching subnetworks. The model is consistent with recent neurophysiological evidence that
synchronous activity occurs in the brain and may play a representational role in neural information processing. The model also makes
specific psychologically significant predictions about the nature of reflexive reasoning. It identifies constraints on the form of rules
that may participate in such reasoning and relates the capacity of the working memory underlying reflexive reasoning to biological
parameters such as the lowest frequency at which nodes can sustain synchronous oscillations and the coarseness of synchronization.

Keywords: binding problem; connectionism; knowledge representation; long-term memory; neural oscillations; reasoning; short-
term memory; systematicity; temporal synchrony; working memory

1. Introduction reasoning, consider the following example derived from
Schubert (1989). Imagine a person reading a variation of

The ability to represent and reason with a large body of the Little Red Riding Hood (LRRH) story, in which the
knowledge in an effective and systematic manner is a wolf intends to eat LRRH in the woods. The reader is at
central characteristic of cognition. This is borne out by the point in the story where the wolf, who has followed
research on artificial intelligence and cognitive science, LRRH into the woods, is about to attack her. The next
which suggests that reasoning underlies even the most sentence reads: 'The wolf heard some woodcutters
commonplace intelligent behavior. For example, lan- nearby and so he decided to wait." It seems reasonable to
guage understanding, a task we usually perform rapidly claim that the reader will understand this sentence spon-
and effortlessly, depends upon our ability to make predic- taneously and without conscious effort. However, a care-
tions, generate explanations, and recognize speakers' ful analysis suggests that even though the reader remains
plans. ' To appreciate the richness and speed of human unaware of it, understanding this sentence requires a
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Shastri & Ajjanagadde: Association to reasoning

chain of reasoning that may be described informally as symbolic computation, and the restriction on the corn-
follows (parenthetical text identifies the background plexity of messages exchanged by neurons, impose strong
knowledge that might mediate the reasoning process): constraints on the nature of neural representations and

The wolf will approach LRRH (to eat something you processes (Feldman 1989; Feldman & Ballard 1982; Shas-
have to be near it); LRRH will scream (because a child is tri 1991). [See also Feldman: "Four frames suffice: A
scared by an approaching wild animal); upon hearing provisional model of vision and space" BBS 8(2) 1985;
the scream the woodcutters will know that a child is in Ballard: "Cortical connections and parallel processing:
danger (because a child's screaming suggests that she is Structure and function" BBS 9(1) 1986.1 As we discuss in
in danger); the woodcutters will go to the child (people section 2, a reasoning system must be capable ofencoding
want to protect children in danger, and in part this systematic and abstract knowledge and instantiating it in
involves determining the source of the danger); the specific situations to draw appropriate inferences. This
woodcutters will try to prevent the wolf from attacking means that the system must solve a complex version of the
LRRH (people want to protect children); in doing so variable-binding problem (see Section 2 and Feldman
the woodcutters may hurt the wolf (preventing an 1982; von der Malsburg 1986). In particular, the system
animal from attacking may involve physical force); so must be capable of representing composite structures in a
the wolf decides to wait (because an animal does not dynamic fashion and systematically propagating them to
want to get hurt). instantiate other composite structures. This turns out to
One could argue that some of the steps in this reasoning be a difficult problem for neurally motivated models. As

process are precompiled or "chunked," but it would be McCarthy (1988) observed, most connectionist systems
unreasonable to claim that the entire chain of reasoning suffer from the "unary or even propositional fixation" with
can be construed as direct retrieval or even a single-step their representational power restricted to unary predi-
inference. Hence, in addition to accessing lexical items, cates applied to a fixed object. Fodor and Pylyshyn
parsing, and resolving anaphoric reference, some compu- (1988a) have even questioned the ability of connectionist
tation similar to the above chain of reasoning must occur networks to embody systematicity and compositionality.
when the sentence in question is processed. As another
example, consider the sentence "John seems to have
suicidal tendencies; he has joined the Colombian drug 1.1. Reflexive reasoning: Some assumptions,
enforcement agency." In spite of its being novel, we can observations and hypotheses
understand the sentence spontaneously and without con- Reflexive reasoning occurs with reference to a large body
scious effort. This sentence, however, could not have of long-term knowledge. This knowledge forms an inte-
been understood without using background knowledge gral part of an agent's conceptual representation and is
and dynamically inferring that joining the Colombian retained for a considerable period of time once it is
drug enforcement agency has dangerous consequences, acquired. We wish to distinguish long-term knowledge
and since John probably knows this, his decision to join from short-term as well as medium-term knowledge. By
the agency suggests that he has suicidal tendencies. the last we mean knowledge that persists longer than

As the above examples suggest, we can draw a variety of short-term knowledge and may be remembered for days
inferences rapidly, spontaneously, and without conscious or even weeks. Such medium-term knowledge, however,
effort - as though they were a reflexive response of our may be forgotten without being integrated into the agent's
cognitive apparatus. Let us accordingly describe such long-term conceptual representation. The distinction be-
reasoning as reflexive (Shastri 1990). 2 Reflexive reasoning tween medium- and long-term knowledge is not arbitrary
may be contrasted with reflective reasoning, which re- and seems to have a neurological basis. It has been
quires reflection, conscious deliberation, and often an suggested that medium-term memories are encoded via
overt consideration of alternatives and weighing of possi- long-term potentiation (LTP) (Lynch 1986), and some of
bilities. Reflective reasoning takes longer and often re- them subsequently converted into long-term memories
quires the use of external props such as a paper and and encoded via essentially permanent structural changes
pencil. Examples of such reasoning are solving logic (see, e.g., Marr 1971; Squire 1987; Squire & Zola-Morgan
puzzles, doing cryptarithmetic, or planning a vacation. 3  1991).

Our remarkable ability to perform reflexive reasoning An agent's long-term knowledge base (LTKB) encodes
poses a challenge for cognitive science and neuroscience: several kinds of knowledge. These include specific knowl-
How can a system of simple and slow neuronlike elements edge about particular entities, relations, events, and situ-
represent a large body of systematic knowledge and ations, and general sy-stematic knowledge about the regu-
perform a range of inferences with such speed? With larities and dependencies in the agent's environment. For
nearly 1012 computing elements and 1015 interconnec- example, an agent's LTKB may contain specific knowl-
tions, the brain's capacity for encoding, communicating, edge such as "Paris is the capital of France" and "Susan
and processing information seems overwhelming. But if bought a Rolls-Royce," as well as systematic and
the brain is extremely powerful, it is also extremely instantiation-independent knowledge such as "if one
limited: First, neurons are slow computing devices, buys something then one owns it." We will refer to
Second, they communicate relatively simple messages specific knowledge as facts, and general instantiation-
that can encode only a few bits of information. Hence a independent knowledge as rules (note that by a rule we do
neuron's output cannot encode names, pointers, or coin- not mean a "rule of inference" such as rnodus ponens). The
plex structures. 4 Finally, the computation performed by a LTKB may also include knowledge about the attributes of
neuron is best described as an analog spatio-temporal features of concepts and the superordinate/subordinat'
integration of its inputs. The relative simplicity of a relations among concepts, and also procedural knowledge
neuron's processing ability with reference to the needs of such as "how to mow a lawn."
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Shastri & Ajanagadde: Association to reasoning

In discussing the LTKB we are focusing on representa- Not surprisingly, cognitive agents can perform only a
tional adequacy, that is, the need to represent entities, limited class of inferences with extreme efficiency. Natu-
relations, inferential dependencies, and specific as well as rally, we expect that the representational and reasoning
general knowledge. The expressiveness implied by this ability of the proposed system will also be constrained and
generic specification, however, is sufficient to represent limited in a number of ways. However, we would like the
knowledge structures such as frames (Minsky 1975), strengths and limitations of the system to be psycho-
scripts (Schank & Abelson 1977), and productions or if- logically plausible and to mirror some of the strengths and
then rules (Newell & Simon 1972). limitations of human reasoning.

A serious attempt at compiling commonsense knowl-
edge suggests that the LTKB may contain as many as 108 1.2. Computational constraints
items (Guha & Lenat 1990). This should not be very
surprising given that it must include, besides other Connectionist models (Feldman & Ballard 1982; Rumel-
things, our knowledge of naive physics and naive psychol- hart & McClelland 1986) are intended to emulate the
ogy; facts about ourselves, our family, and friends; facts information-processing characteristics of the brain - al-
about history and geography; our knowledge of artifacts; beit at an abstract computational level - and to reflect its
sports, art, and music trivia; and our models of social and strengths and weaknesses. Typically, a node in a connec-
civic interactions. tionist network corresponds to an idealized neuron, and a

link corresponds to an idealized synaptic connection. Let
1.1.1. Space and time constraints on a reflexive reasoner. us enumerate some core computational features of con-
Given that there are about 1012 cells in the brain, the nectionist models: (1) Nodes compute very simple fune-
expected size of the LTKB (108) rules out any encoding tions of their inputs. (2) They can only hold limited state
scheme whose node requirement is quadratic (or higher) information - while a node may maintain a scalar "poten-
in the size of the LTKB.5 In view of this we adopt the tial," it cannot store and selectively manipulate bit
working hypothesis that the node requirement of a model strings. (3) Node outputs do not have sufficient resolution
of reflexive reasoning should be no more than linear in to encode symbolic names or pointers. (4) There is no
(i.e., proportional to) the size of the LTKB. This is a central controller that instructs individual nodes to per-
reasonable hypothesis. Observe that (1) a node in an form specific operations at each step of processing.
idealized computational model may easily correspond to a
hundred or so actual cells, and (2) the number of cells
available for encoding the LTKB can only be a fraction of 1.3. A preview
the total number of cells. We discuss the variable-binding problem as it arises in the

We believe that although the size of an agent's LTKB context of reasoning and describe a neurally plausible
increases considerably from, say, age 10 to 30, the time solution to this problem. The solution involves maintain-
taken by an agent to understand natural language does ing and propagating dynamic bindings using synchronous
not. This leads us to suspect that the time taken by an firing of appropriate nodes. We show how our solution
episode of reflexive reasoning does not depend on the leads to a connectionist knowledge representation and
overall size of the LTKB but only on the complexity of reasoning system (which we call SHRUTI, see Response,
the particular episode of reasoning. Hence we adopt the Note 1) that can encode a large LTKB consisting of facts
working hypothesis that the time required to perform and rules involving n-ary predicates and variables, and
reflexive reasoning is independent of the size of the perform a broad class of reasoning with extreme effi-
LTKB. 6  ciency. Once a query is posed to the system by initializing

The independence of (1) the time taken by reflexive the activity of appropriate nodes, the system computes an
reasoning and (2) the size of the LTKB implies that answer automatically and in time proportional to the
reflexive reasoning is a parallel process and involves the length of the shortest chain of reasoning leading to
simultaneous exploration ofa number of inferential paths. the conclusion. The ability to reason rapidly is a con-
Hence, a model of reflexive reasoning must be parallel at sequence, in part, of the system's ability to maintain
the level of rule application and reasoning, that is, it must and propagate a large number of dynamic bindings
support knowledge-level parallelism. This is a critical simultaneously.
constraint and one that is not necessarily satisfied by a The view of information processing implied by the
connectionist model simply because it is "connectionist" proposed system is one where (1) reasoning is the tran-
(see also Sumida & Dyer 1989). sient but systematic propagation of a rhythmic pattern of

We understand written language at the rate of some- activity, (2) each entity in the dynamic memory is a phase
where between 150 and 400 words per minute (Carpenter in this rhythmic activity, (3) dynamic bindings are repre-
& Just 1977). In other words, we can understand a typical sented as the synchronous firing of appropriate nodes, (4)
sentence in a matter of one to two seconds. Given that long-term facts are subnetworks that act as temporal
reflexive reasoning occurs during language understand- pattern matchers, and (5) rules are interconnection pat-
ing, it follows that episodes of reflexive reasoning may terns that cause the propagation and transformation of
take as little as a few hundred milliseconds. rhythmic patterns of activity.

V'Wc cite neurophysiological data that suggest that the
1.1.2. Refleive reasoning is limited reasoning. Complex- basic mechanisms proposed for representing and propa-
ity theory rules out the existence of a general-purpose gating dynamic variable bindings, namely, the propaga-
reasoning system that derives all inferences efficiently. tion of rhythmic patterns of activity and the synchronous
This entails that there must exist constraints on the class activation of nodes, exist in the brain and appear to play a
of reasoning that may be performed in a reflexive manner, role in the representation and processing of information.
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Our system predicts a number of constraints on reflex- provide a detailed answer to the question of learning. We
ive reasoning that have psychological implications. These do, however, discuss in brief how specific facts may be
predictions concern the capacity of the workini: memory learned and existing rules modified (sect. 10.6). Neural
underlying reflexive reasoning (WMRR) and the form of plausibility is an important aspect of this work - we show
rules that can participate in such reasoning. The predic- that the proposed system can be realized by using neu-
tions also relate the capacity of the WMRR and the time it rally plausible nodes and mechanisms, and we investigate
would take to perform one step of reasoning to biological the consequences of choosing biologically motivated
parameters such as the lowest frequency at which nodes values of system parameters. Needless to say, what we
can sustain synchronous oscillations, the coarseness of describe is an idealized computational model and it is not
synchronization, and the time it takes connected nodes to intended to be a blueprint of how the brain encodes an
synchronize. By choosing biologically plausible system LTKB and performs reflexive reasoning.
parameters, we show that it is possible for a system of
neuronlike elements to encode millions of facts and rules 1.4.1. An outline of the paper. Section 2 discusses the
and yet perform multistep inferences in a few hundred dynamic-binding problem in the context of reasoning.
milliseconds. Section 3 presents our solution to this problem and the

Reasoning is the spontaneous and natural outcome of encoding of long-term rules and facts. Section 4 describes
the system's behavior. The system does not apply syntac- a reasoning system capable of encoding an LTKB and
tic rules of inference such as modus ponens. There is no answering queries on the basis of the encoded knowledge.
separate interpreter or inference mechanism that manip- The interface of the basic reasoning system with an IS-A
ulates and rewrites symbols. The network encoding of the hierarchy that represents entities, types (categories), and
LTKB is best viewed as a vivid internal model of the the super-/subordinate concept relations between them
agent's environment, where the interconnections be- is described in section 5. Section 6 discusses a solution to
tween (internal) representations directly encode the de- the multiple instantiation problem. Section 7 discusses
pendencies between the associated (external) entities. the biological plau, ibility of our system and identifies
When the nodes in this model are activated to reflect a neurally plausible values of certain system parameters.
given state of affairs in the environment, the model Section 8 points out the psychological implications of the
spontaneously simulates the behavior of the external constraints on reflexive reasoning suggested by the sys-
world and in doing so makes predictions and draws tem. Section 9 discusses related connectionist models and
inferences. the marker-passing system NETL. Finally, section 10 dis-

The representational and inferential machinery devel- cusses some open problems related to integrating the
oped in this work has wider significance and can be proposed reflexive-reasoning system with an extended
applied to other problems whose formulation requires the cognitive system. Certain portions of the text are set in
expressive power of n-ary predicates, and whose solution small type. These cover detailed technical material and
requires the rapid and systematic interaction between may be skipped without loss of continuity.
long-term and dynamic structures. Some examples of
such problems are (1) parsing and the dynamic linking of
syntactic and semantic structures during language pro- 2. Reasoning and the dynamic-binding problem
cessing, and (2) model-based visual object recognition
requiring the dynamic representation and analysis of Assume that an agent's LTKB embodies the following
spatial relations between objects and/or parts of objects. rules:7

Recently, Henderson (1992) has proposed the design of a 1. If someone gives a recipient an object then the
natural language parser based on our computational recipient comes to own that object.
model. 2. Owners can sell what they own.

Given the above knowledge, an agent would be capable of
inferring "Mary owns Bookl" and "Mary can sell Bookl"

1.4. Caveats on being told "John gave Mary Bookl." A connectionist
reasoning system that emhbodies the same knowledge

Our primary concern has been to extend the representa- should also be capable of making similar inferences and,
tional and inferential power of neurally plausible (connec- hence, exhibiting the following behavior: If the network's
tionist) models and to demonstrate their scalability. We pattern of activity is initialized to represent the fact "John
are also concerned that the strengths and limitations of gave Mary Bookl," then very soon its activity should
our system be psychologically plausible. However, our evolve to include the representations of the "Mary owns
aim has not been to model data from specific psychologi- Book1" and "Mary can sell Bookl."
cal experiments. What we describe is a partial model of Let us point out that the knowledge embodied in a rule
reflexive reasoning. It demonstrates how a range of rea- may be viewed as having two distinct aspects. A rule
soning can lie performed in a reflexive manner, and it also specifies a systematic correspondence between the argu-
identifies certain types of reasoning that cannot be per- ments of certain "predicates" (where a predicate may be
formed in a reflexive manner. Our system, however, does thought of as a relation, a fi'ame, or a schema). For ex-
not model all aspects of reflexive reasoning. For example, ample, rule (1) specifics that a "give" event leads to an
we focus primarily on declarative and semantic knowl- ".own" event where the recipient of"give" corresponds to
edge and do not model reflexive analogical reasoning, or the owm'nr of"own," and the object of"'give" correspo(nds
reflexive reasoning involving episodic memorv (lhilving to the objcct of"owvn." ILet us re'fer to this aspect of a rule
198,3) and imagery. \Ve (1o not say imuch about what the as slstenmaticityl.. The second(l aspect of the knowledge
actual comlt('nts ofanl agent*S I IKIB ought to he. nor (lo we emil)odied ini a rul' concerns the approp)riatee'ss of the
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specified argument correspondence in a given situation, fact is essentially a collection of bindings between pre-
depending upon the types (or features) of the argument dicate arguments and fillers. For example, the fact
fillers involved in that situation. Thus appropriateness give(John, Mary, Book]) is the collection of argument-
may capture type restrictions that argument fillers must filler bindings (giver = John, recipient = Mary, give-
satisfy in order for a rule to fire. It may also indicate type object = Bookl). Hence representing a dynamic fact
preferences and provide a graded measure of a rule's amounts to representing, dynamically, the appropriate
applicability in a given situation on the basis of the types bindings between predicate arguments and fillers.
of the argument fillers in that situation. The dynamic representation of facts should also sup-

We will first focus on the problems that must be solved port the simultaneous representation of multiple facts
in order to incorporate systematicity in a connectionist such as give(John, Mary, Book]) and give(Mary, John,
system. In section 5 we will discuss how the solutions Car3) without "creating" ghost facts such as give(Mary,
proposed to deal with systematicity may be augmented John, Book]).
to incorporate appropriateness and represent context-
dependent rules that are sensitive to the types of the 2.1,1. Static versus dynamic bindings. A connectionist
argument fillers. encoding that represents the bindings associated with the

If we focus on systematicity, then rules can be suc- fact give(John, Mary, Bookl) without cross-talk is illus-
cinctly described by using the notation of first-order logic. trated in Figure 1 (cf. Shastri 1988b; Shastri & Feldman
For example, rules (1) and (2) can be expressed as the 1986). Each triangular binder node binds the appropriate
following first-order rules: filler to the appropriate argument and the focal node

give-23 provides the requisite grouping between the set
Vx,y,z [give(x,yz) = own(y~z)] (1) of bindings that make up the fact. The binder nodes

Vu,v [own(u,v) => can-sell(u,v)] (2) become active on receiving two inputs and thus serve to
retrieve the correct filler, given a fact and an argumentwhere give is a three-place predicate with arguments: (and vice versa). Such a static encoding, using physically

giver, recipient, and give-object; own is a two-place predi- interconnected nodes and links to represent argument-
cate with arguments: owner and own-object; and can-sell filler bindings, is suitable for representing stable and
is also a two-place predicate with arguments: potential- long-term knowledge, because the required focal and
seller and can-sell-object. The use of quantifiers and binder nodes may be learned (or recruited) over time in
variables allows the expression of general, instantiation- order to represent new but stable bindings of constitu-
independent knowledge and helps in specifying the sys- ents. 10 This scheme, however, is implausible for repre-
tematic correspondence between predicate arguments. 9  senting bindings required to encode dynamic structures
A fact may be expressed as a predicate instance (atomic that will arise during language understanding and visual
formula). For example, the fact "John gave Mary Bookl" processing. Such dynamic bindings may have to be repre-
may be expressed as give(John, Mary, Book1). sented very rapidly - within a hundred milliseconds -

A connectionist network must solve three technical and it is unlikely that there exist mechanisms that can
problems in order to incorporate systematicity. We dis- support widespread structural changes and growth of new
cuss these problems in the following three sections. links within such time scales. An alternative would be to

assume that interconnections between all possible pairs of
2.1. Dycnamic representation of facts: Instantiating arguments and fillers already exist. These links normallyedicame s ta oremain "inactive" but the appropriate subset of these links

predicates becomes "active" temporarily to represent dynamic bind-

A reflexive-reasoning system should be capable of repre- ings (Feldman 1982; von der Malsburg 1986). This ap-
senting facts in a rapid and dynamic fashion. Observe that proach, however, is also problematic because the number
the reasoning process generates inferred facts dynam- of all possible argument-filler bindings is extremely large,
ically and the reasoning system should be capable of and having preexisting structures for representing all
representing these inferred facts. Furthermore, the rea-
soning system must interact with other processes that
communicate facts and pose queries to it, and the system
should be capable of dynamically representing such facts
and queries.

The dynamic representation of facts poses a problem gwer
for standard connectionist models. Consider the fact
give(John, Mary, Book]). This fact cannot be represented
dynamically by simply activating the representations ofthe arguments giver. recipicnt, and give-object, and the
constituents "John," "Mary." and "Book1." Such a repre-
sentation would suffer from cross-talk and would be
indistinguishable from the representations of give(Mary, John
John, Book)) and gi'((Bookl. Mary, John). The problem
is that this fact - like any other instantiation of an n-ary
I)redicate - is a coniposite strIcture: it does not merely
express an association hetween the constituents "John.;" Figurae I. Env'ling static- hiIitigS using d(('(itd ('(l(e h' an(I
"Mary." and "Book I. rather it expresses ta specific rela- links: ginr-23 is aifoC(al nodc' and the triangles re'present bindehr
tion wlh(r'ini each ('oisttlic('idt plavs a distili't role. Tihus a nodes.
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these bindings will require a prohibitively large num- 2.4. Dynamic binding and categorization
ber of nodes and links. Techniques for representing As discussed at the beginning of section 2, the appro-
argument-filler bindings on the basis of the von Neumann
architecture also pose difficulties because they require priateness of a rule in a specific situation may depend on
communicating names or pointers of fillers to appropriate the types/features of the argument fillers involved in that
argument nodes and vice versa. As pointed out earlier, situation. Thus categorization plays a crucial role in the
the storage and processing capacity of nodes as well as the propagation of dynamic bindings during reasoning. Con-
resolution of their outputs is not sufficient to store, pro- sider the rule: Vx,y walk-into(x,y) => hurt(x) (i.e., If one
cess, and communicate names or pointers, walks into something then one gets hurt). As stated, the

rule only encodes systematicity and underspecifies the
relation between "walking into" and "getting hurt." It

2.2. Interence, propagation of dynamic bindings and would fire even in the situation "'John walked into the
the encoding of rules mist" and lead to the inference "John got hurt." A com-

The second technical problem that a connectionist rea- plete encoding of the knowledge embodied in the rule
soning system must solve concerns the dynamic genera- would also specify the types/features of the argument
tion _r inferred facts. For example, starting with a dy- fillers of"walk-into" for which the application of this rule
namic representation of give(John, Mary, Book]), the would be appropriate. Given such an encoding, the prop-
state of network encoding rules (1) and (2) should evolve agation of binding from the first argument of walk-into to
rapidly to include the dynamic representations of the the argument of hurt will occur only if the fillers of the
inferred facts: own(Mary, Book)) and can-sell(Mary, arguments of walk-into belong to the appropriate types
Book1). This process should also be free of cross-talk and (we discuss the encoding of such rules in sect. 5).
not lead to spurious bindings. The use of categorization can also prevent certain cases

Generating inferred facts involves the systematic prop- of cross-talk in the representation of dynamic facts. For
agation of dynamic bindings in accordance with the rules example, categorization may prevent cross-talk in the
embodied in the system. A rule specifies antecedent and representation of buy(Mary, Book)) because spurious
consequent predicates and a correspondence between versions of this fact such as buy(Bookl, Mary) would
the arguments of these predicates. For example, the rule violate category restrictions and, hence, would be unsta-
Vxyz [give(xyz) => own(y~z)] specifies that a give event ble. However, categorization cannot in and of itself solve
results in an own event wherein the recipient of a give the dynamic-binding problem, because it alone cannot
event corresponds to the owner of an own event and the enforce systematicity. For example, categorization cannot
give-object of a give event corresponds to the own-object determine that the dynamic fact give(John, Mary, Book1)
of an own event. An application of a rule (i.e., a step of should result in the inferred fact own(Mar!, Bookl) but
inference) therefore amounts to taking an instance of the not own(John, Book1).
antecedent predicate(s) and creating, dynamically, an
instance of the consequent predicate, with the argument 2.5. The dynamic-binding problem in vision
bindings of the latter being determined by applying the andlanguage
argument correspondence specified in the rule to the
argument bindings of the former. Thus the application of The need for systematically dealing with composite ob-
the rule Vx,yz [give(x,yz) > own(yx)], in conjunction jects in a dynamic manner immediately gives rise to the
with an instance of give, give(juhn, Mary, Book)), creates dynamic-binding problem. Thus the dynamic-binding
an instance of own with the bindings (owner = Mary, own- problem occurs during any cognitive activity that admits
object = Book]). These bindings constitute the inferred systematicity and compositionality. Consider vision. Vi-
fact own(Mary, Book1). Once the representation of an sual object recognition involves the rapid grouping of
inferred fact is established, it may be used in conjunction information over the spatial extent of an object and across
with other domain rules to create other inferred facts. different feature maps so that features belonging to one
Such a chain of inference may lead to a proliferation of object are not confused with those of another (Treisman &
inferred facts and the associated dynamic bindings. Gelade 1980). The binding of features during visual pro-

cessing is similar to the binding of argument fillers during
reasoning. In terms of representational power, however,

2.3. Encoding long.term fcts the grouping of all features belonging to the same object
In addition to encoding domain rules such as (1) and (2), a can be expressed using unary-predicates, 1 1 but as we
connectionist reasoning system must also be capable of have seen, reasoning requires the representation of unary
encoding facts in its LTKB and using them during recall, as well as n-ary predicates. A similar need would arise in a
recognition, query answering, and reasoning. For exam- more sophisticated vision system that dynamically repre-
pie, we expect our system to be capable of encoding a fact sents and analyzes spatial relations between objects or
such as "John bought a Rolls-Royce" in its LTKB and using parts of an object.
it to answer rapidly the query Did John buy a Rolls- Although there may be considerable disagreement
Royce? We also expect it to use this fact in conjunction over the choice of primitives and the functional relation-
with other knowledge to answer rapidly queries such as ship between the "meaning" of a composite structure and
Does John own a car? Observe that storing a long-term that of its constituents, it seems apparent that a computa-
fact would require storing the associated bindings as a tional model of language should be capable of computing
static long-term structure. This structure should interact and representing composite structures in a systematic
with dynamic bindings and recognize those that match it. and dynamic manner. Thus language understanding re-
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quires a solution to the dynamic-binding problem, to complex representations. The expressiveness and infer-
support reasoning as well as syntactic processing and the ential power of our model exceed that of the models cited
dynamic linking of syntactic and semantic structures. above, because our system can represent dynamic instan-

tiations of n-ary predicates, including multiple instantia-
tions of the same predicate. 13

3. Solving the dynamic-binding problem Clossman (1988) has used synchronous activity to rep-
resent argument-filler bindings, but he has not suggested

In this section we describe solutions to three technical an effective representation of "rules" (and long-term
problems associated with dynamic bindings discussed in facts). Consequently, his system could not propagate
sections 2.1 through 2.3. The solutions involve several dynamic bindings to perform inferences.
ideas that complement each other and together lead to a As an abstract computational mechanism, temporal
connectionist model of knowledge representation and synchrony can be related to the notion of narker passing
reflexive reasoning. (Fahlman 1979; Quillian 1968). 14 Fahlman has proposed

As pointed out in section 2.1, it is implausible to the design of a marker-passing machine (NETL) consisting
represent dynamic bindings by using structural changes, of a parallel network of simple processors and a serial
prewired interconnection networks, or by communicat- computer that controlled the operation of the parallel
ing names/pointers of arguments and fillers. Instead, network. Each node could store a small number of dis-
what is required is a neurally plausible mechanism for crete "markers" (or tags) and each link could propagate
rapidly and temporarily labeling the representations of markers between nodes under the supervision of the
fillers and predicate arguments to encode dynamically network controller. Fahiman showed how his machine
argument-filler bindings. Also required are mechanisms could compute transitive closure and set intersection in
for systematically propagating such transient labels and parallel, and in turn, solve a class of inheritance and
allowing them to interact with long-term structures. recognition problems efficiently. Fahlman's system, how-

In the proposed system we use the temporal structure ever, was not neurally plausible. First, nodes in the
of node activity to provide the necessary labeling. Specifi- system were required to store, match, and selectively
cally, we represent dynamic bindings between arguments propagate marker bits. Although units with the appropri-
and fillers by the synchronous firing of appropriate nodes. ate memory and processing characteristics may be readily
We also propose appropriate representations for n-ary realized, using electronic hardware, they do not have any
predicates, rules, long-term facts, and an IS-A hierarchy direct neural analog. Second, the marker-passing system
that facilitate the efficient propagation and recognition of operated under the strict control of a serial computer that
dynamic bindings. 12  specified, "at every step of the propagation, exactly which

The significance of temporally organized neural activity types of links were to pass which markers in which
has long been recognized (Freeman 1981; Hebb 1949; directions" (Fahlman 1979).
Sejnowski 1981). In particular, von der Malsburg (1981; The relation between marker passing and temporal
1986) has proposed that correlated activity within a group synchrony can be recognized by noting that nodes firing
of cells can be used to represent the dynamic grouping of in synchrony may be viewed as being marked with the
cells. He also used temporal synchrony and synapses that same marker, and the propagation of synchronous activity
can alter their weights within hundreds of milliseconds to along a chain of connected nodes can be viewed as the
model sensory segmentation and the human ability to propagation of markers. Thus, in developing our reason-
attend to a specific speaker in a noisy environment (von ing system using temporal synchrony we have also estab-
der Malsburg & Schneider 1986). Abeles (1982; 1991) has lished that marker-passing systems can be realized in a
put forth the hypothesis that computations in the cortex neurally plausible manner. In the proposed system, noth-
occur via "synfire chains" - propagation of synchronous ing has to be stored at a node in order to mark it with a
activity along diverging and converging pathways be- marker. Instead, the time of firing of a node relative to
tween richly interconnected cell assemblies. Crick (1984) other nodes and the coincidence between the time of
has also suggested that the use of fine temporal coinci- firing of a node and that of other nodes has the effect of
dence to represent dynamic bindings and synchronized marking a node with a particular marker! A node in our
activity across distant regions forms the keystone of Da- system is not required to match ,ny markers, it simply has
masio's (1989) general framework for memory and con- to detect whether appropriate inputs are coincident. Our
sciousness. Several researchers have reported the occur- approach enables us to realize the abstract notion of
rence of synchronous activity in the cat and monkey visual markers by using time, a dimension that is forever pre-
cortex and presented evidence in support of the conjec- sent, and giving it added representational status.
ture that the visual cortex may be using synchronous As we shall see, the neural plausibility of our system
and/or oscillatory activity to solve the binding problem also results from its ability to operate without a central
(see sect. 7). controller. Once a query is posed to the system by

Recently, other researchers have used temporal syn- activating appropriate nodes, it computes the solution
chrony to solve various aspects of the binding problem in without an external controller directing the activity of
visual perception (Horn et al. 1991; Hummel & Bieder- nodes at each step of processing (see also sect. 9.1).
man 1992; Strong& Whitehead 1989). In this work we use Several other connectionist solutions to the binding
temporal synchrony to solve a different problem, namely, problem have been suggested (Barnden & Srinivas 1991;
the representation of, and systematic reasoning with, Dolan & Smolensky 1989; Feldman 1982; Lange & Dyer
conceptual knowledge. In solving this problem we also 1989; Touretzky & Hinton 1988). These alternatives are
demonstrate that temporal synchrony can support more discussed in section 9.3.
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3.1. RepreentIng dynamki binding*

Refer to the representation of some predicates and enti-
ties shown in Figure 2. Observe thLt predicates, their
arguments, and entities are represented by using distinct 0-ob

nodes. For example, the ternary predicate give is repre-
sented by the three argument nodes labeled giver, recip, obL
and g-obj together with an associated "node" depicted as a rec,-
dotted rectangle (the role of the latter is specified in sect. W'.
3.3). For simplicity we assume that each argument node John
corresponds to an individual connectionist node; this is an Mary
idealization. In section 7.3 we discuss how each argument Susan
node corresponds to an ensemble of nodes. Nodes such as sok
John and Mary correspond to focal nodes of more elabo-
rate connectionist representations of the entities "John"
and "Mary." Information about the attribute values (fea-
tures) of "John" and its relationship to other concepts is
encoded by linking the focal node John to appropriate Figure 3. Rhythmic pattern of activation representing the
nodes. (Details of such an encoding may be found in dynamic bindings (giver = John, recipient = Mary, give-object
Shastri 1991; Shastri & Feldman 1986). As explained by = Bookl). These bindings constitute the fact give(John, Mary,
Feldman (1989), a focal node may also be realized by a Bookl). The binding between an argument and a filler is repre-

small ensemble of nodes. sented by the in-phase firing of associated nodes.

Dynamic bindings are represented in the system by the
synchronous firing of appropriate nodes. Specifically, a
dynamic binding between a predicate argument and its significant at this point and is not specified. As another
filler is represented by the synchronous firing of nodes example, consider the firing pattern shown in Figure 4.
that represent the argument and the filler. With refer- This pattern of activation represents the single binding
ence to the nodes in Figure 2, the dynamic bindings (giver = John) and corresponds to the partially instanti-
(giver =John, recipient = Mary, give-object = Book]l)are ated fact give(John,x,y), (i.e., "John gave someone
represented by the rhythmic pattern of activity shown in something").
Figure 3. These bindings encode the dynamic fact Figure 5 shows the firing pattern of nodes correspond-
give(John, Mary, Book1). The absolute phase of firing of ing to the dynamic representation of the bindings (giver =
filler and argument nodes is not significant - what matters John, recipient = Mary, give-object = Book], owner =
is the coincidence (or the lack thereof) in the firing of Mary, own-object = Book1, potential-seller = Mary, can-
nodes. The activity of the dotted rectangular nodes is not sell-object = BookI). These bindings encode the facts

give(John, Mary, Book1), own(Mary, Booki), and can-
sell(Mary, Booki). Observe that the (multiple) bindings
between Mary and the arguments recipient, owner, and
potential-seller are represented by these argument nodes

give firing in-phase with Mary. Further, the individual con-
cepts Mary, Book1, and John are firing out of phase and
occupy distinct phases in the rhythmic pattern of activity.

John

Q
own ~ j P-seller

Z__ owner

00 gie ., J
Jh fL__ ------ J

/" "'.Mary

can-sell 0 2JitSusan
Figure 2. Encoding predicates and individual concepts: Dis- So

tinct predicates and arguments are encoded using distinct nodes
(in sect. 7.4 we discuss how nodes may be replaced by an
enseilne of nodes). The hatcbcd lines below concept nodes are Figure 4. Representation of the d(namlic binding (giver =
intended to hitghlight that these nodes are jost foc•al nodes of a John) that coustitotes the. partially iostantiated fac't "John ga~vv

much rich('r representation of cioncepts. Son ieone sn iethi ng."
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to the arguments of the consequent predicate in accor-
,s-et •dance with the argument correspondence specified in the

S• wrule. With reference to Figure 2, encoding the rules
rl .Vx,yz [give(x,yz) • own(yz)] and Vu,v [own(u,v) :> can-

sell(uv)] should have the following effect: The state of
activation described by the rhythmic activation pattern
shown in Figure 3 should eventually lead to the rhythmic
activation pattern shown in Figure 5.

The desi, 2d behavior may be realized if a rule is
,Jcn 7r1encoded by linking the arguments of the antecedent and
M... consequent predicates so as to reflect the correspondence

Suan between arguments specified by the rule. For example,
So"ki the rule Vx,yz [give(x,yz) #> own(yz)] can be encoded by
Sol_ establishing links between the arguments recipient and

give-object of give and the arguments owner and own-
object of own, respectively. If we also wish to encode the

Figure 5. Pattern of activation representing the dynamic rule Vx,y [buy(x,y) = own(x,y)], we can do so by connec-

bindings (giver = John, recipient = Mary, give-object = Book 1, ting the arguments buyer and buy-object of buy to the

owner = Mary, own-object = Booki, potential-seller = Mary, arguments owner and own-object of own, respectively
can-sell-object = Book1). These bindings constitute the facts This encoding is illustrated in Figure 6. In the idealized
gioe(John, Marn Book]), own(Mary, Bookl), and can-sell(Mary, model we are assuming that each argument is repre-
Bookl). The transient representation of an entity is simply a stnted as a single node and each argument correspon-
phase within an oscillatory pattern of activity. The number of dence is encoded by a one-to-one connection between the
distinct phases required to represent a set of dynamic bindings apiropriate argument nodes. As discussed in section 7.3,
equals only the number of distinct entities involved in the however, each argument will be encoded as an ensemble
bindings. In this example three distinct phases are required. of nodes and each argument correspondence will be
The bindings between Mary and the arguments recipient,
owner, and potential-seller are represented by the in-phase encoded by many-to-many connections between the ap-
firing of the appropriate argument nodes with Mary. propriate ensembles (for a preview see Fig. 26).

Arguments and concepts are encoded by using what
we call p-btu nodes (where btu refers to "binary thresh-
old unit"). These nodes have the following idealized

This highlights significant aspects of the proposed solu- behavior:
tion: 1. Ifa node A is connected to node B then the activity

1. The transient or short-term representation of an of node B will synchronize with the activity of node A. In
entity is simply a phase within a rhythmic pattern of particular, a periodic firing of A will lead to a periodic and
activity. in-phase firing of B. We assume that p-btu nodes can

2. The number of distinct phases within the rhythmic respond in this manner as long as the period of firing, Tr,
activation pattern only equals the number of distinct
entities participating in the dynamic bindings; this does
not depend on the total number of dynamic bindings g g,
represented by the activation pattern. 0 b y

3. The number of distinct entities that can participate ...
in dynamic bindings at the same time is limited by the
ratio of the period of the rhythmic activity and the width
of individual spikes.

Thus far we have assumed that nodes firing in syn-
chrony fire precisely in-phase. This is an idealization. In
general we would assume a coarser form of synchrony,
where nodes firing with a lag or lead of less than w/2 of one own
another would be considered to be firing in synchrony. - .. .
This corresponds to treating the width of the "window of 0

synchrony" to be w.

3.2. Encoding rules and propagating dynamic bindings 0 0
In section 2.2 we described how a step of inference or rule ........
application may be viewed as taking an instance of the /"-"lI "-
antecedent predicate and dynamically creating an in- a - 00
stance of the consequent predicate, with the argument
bindings of the latter being determined by (1) the argu- Figure 6. Encoding of predicates, individual concept.s, and
ment bindings of the former, and (2) the argument corre- the rules VxWy.z gil;'(r, Il. z) 7 ow(!(y.z)]. Vx,Y Iowvn(x, 11) r7

spondl(nce specified by the rule. Consequently. the en- ran-s.'Lx, 01)/, and V.Vy//nay(x. il) = mrn(x, y)/. Links between
co(ling of a rude shouldi provide' a me'ans fi)r propagating argumeints .'reflect the .orrespoihndence bet.tween arguments in
bindings from the argu ('n ts of the antecedent predicate the, atl,•.(,ed(ut s anld cons.(lrls i ot' ro- rules.
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lies in the interval [ir,,.., 'Irax]. This interval can be
interpreted as defining the frequency range over whicds ,b .... .

p-btu nodes can sustain a synchronized response. p--a
2. To simplify the description of our model we will

assume that periodic activity in a node can lead to syn-
chronous periodic activity in a connected node within one
period.

3. A threshold, n, associated with a node indicates that
the node will fire only if it receives n or more synchronous
inputs. 15 If unspecified, a node's threshold is assumed to J

be one. 16  m.-Y
As described above, interconnected p-btu nodes can Susan

propagate synchronous activity and form chains of nodes aocl
firing in synchrony. In section 7we point to evidence from
neurophysiology and cite work on neural modeling that
suggests that the propagation of synchronous activity is a"
neurally plausible. Given the above interconnection pat- Figure 9. Pattern of activation after two periods of oscillation
tern and node behavior, the initial state of activation (with reference to the state of activation in Fig. 7). This state
shown in Figure 7 will lead to the state of activation shown represents the dynamic bindings: (giver = John, recipient =
in Figure 8 after one period, and to the state of activation Mary, give-object = Book], owner = Mary, own-object =
shown in Figure 9 after another period. Book1, potential-seller = Mary, can-sell-object = Book1). The

system has essentially inferred the facts own(Mary, Bookl) and
can-sell(Mary, Book]).

ca-oc8

P-s,,tr The encoding of rules by the explicit encoding of the
W inferential dependency between predicates and predi-

W cate arguments, in conjunction with the use of temporal
9-&4 - synchrony, provides an efficient mechanism for propagat-
,-p _-ing dynamic bindings and performing systematic reason-
Of, -- ing. Conceptually, the proposed encoding of rules creates
John 'a directed inferential dependency graph: Each predicate

argument is represented by a node in the graph, and each
rule is represented by links between nodes denoting the

Susan arguments of the antecedent and consequent predicates.
8o.l .- In terms of this conceptualization, the evolution of the
Sal system's state of activity corresponds to a parallel breadth-

first traversal of the directed inferential dependency
graph. This means that (1) a large number of-rules can fire

Figure 7. Initial pattern of activation representing the bind- in parallel, and (2) the time taken to generate a chain of
ings (giver = John, recipient = Mary, give-object = Book)). inference is independent of thie total number of rules and

just equals 17r where 1 is the length of the chain of
inference and 7r is the period of oscillatory activity.

cc-oW

P4Mg 3.3. Encoding long-term facts: Memory as a temporal
1-71 1pattern matcher

As stated in section 2.3, our system must also be capable
of representing long-term facts, which are essentially a

,cio - .-J permanent record of a set of bindings describing a partic-
giver ular situation. The representation of a long-term fact
ah • should encode the bindings pertaining to the fact in a
maY _-manner that allows the system to recognize rapidly dy-
s namic bindings that match the encoded fact. Given that

Sl . -_dynamic bindings are represented as temporal patterns,
it follows that the encoding of a long-term fact should
behave like a temporal pattern matcher that becomes

a. active whenever the static bindings it encodes match the

Figure 8. Pattern of activation after one period of oscillation dynamic bindings represented in the system's state of

(with reference to the state of activation in Figure 7). This state activation.

represents the dynamic bindings: (giver = John, recipient = The design of such a temporal pattern matcher is
Mary, give-object = Book], owner = Many. own-object = illustrated in Figures 10 and 11, which depict the encod-
Book)). The system has essentially inferred the fact own(Mary, ing of the long-term facts give(John, Mary, Book]) and
Bo(W . give(John, Susan, x), respectively (the latter means "John
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3. A threshold, n, associated with a i-and node indi-
cates that the node will fire only if it receives n or more
synchronous pulse trains. If unspecified, n is assumed to

F1 be one.
An n-ary predicate P is encoded by using two i-and

nodes and n p-btu nodes. One of these i-and nodes is
.. ,M, referred to as the enabler and the other as the collector.
-f- u• An enabler will be referred to as e:P and drawn pointing
fmo 800k1 upward whereas a collector will be referred to as c:P and

drawn pointing downward. With reference to Figures 10
and 11, the ternary predicate give is represented by the

CV" GW •,, g, •enabler e:give, the collector c:give, and the three argu-
ment nodes - giver, recip, and g-obj. The representa-

0i tional significance of the enabler and collector nodes is as
Figure 10. Encoding of a long-term fact: The interconnections follows. The enabler e:P of a predicate P has to be
shown here encode the static bindings (giver-John, recipient = activated whenever the system is queried about P. Such a
Mary, give-object = Book]) that constitute the long-term fact query may be posed by an external process or generated
give(John, Mary, Booki). The pentagon-shaped nodes are i-and internally by the system itself during an episode of rea-
nodes. A i-and node becomes active if it receives an uninter- soning (see sect. 4.4). On the other hand, the system
rupted pulse train. The activation of e:give represents an exter- activates the collector c:P of a predicate P whenever the
nally or internally generated query asking whether the dynamic dynamic bindings of the arguments of P match the knowl-
bindings indicated by the pattern of activity of argument nodes edge encoded in the LTKB.
match the long-term knowledge encoded in the LTKB. The ed ge encoded in t LTKB.
activation of c:give represents an assertion by the system that A long-term fact is encoded using a i-and node which
these dynamic bindings match the knowledge encoded in the receives an input from the enabler node of the associated
LTKB. predicate. This input is modified by inhibitory links from

argument nodes of the associated predicate. If an argu-
ment is bound to an entity, the modifier input from the
argument node is in turn modified by an inhibitory link
from the appropriate entity node. The output of the i-and
node encoding a long-term fact is connected to the collec-
tor of the associated predicate. We will refer to the i-and

F1 node associated with a long-term fact as a fact node. Note
that there is only one enabler node, one collector node,
and one set of argument nodes for each predicate. These

ftm dal nodes are shared by all the long-term facts pertaining to
"-- -mary that predicate.

It can be shown that a fact node becomes active if and only if
the static bindings it encodes match the dynamic bindings
represented in the network's state of activation. As stated above,

**A gk1 u 9.04 e:P becomes active whenever any query involving the predicate
,. A 9P is represented in the system. Once active, e:P outputs an

f uninterrupted pulse train that propagates to various fact nodes
Figure 11. Encoding of the partially instantiated long-term attached to e:P. Now the pulse train arriving at a fact node will be
fact give(John, Mary, x), that is "John gave Mary something." interrupted by an active argument of P, unless the filler of this
The input from g-obj does not receive an inhibitory input from argument specified by the long-term fact is firing in s3chrony
any filler. with the argument. But a filler and an argument will be firing in

synchrony if and only if they are bound in the dynamic bindings.
Thus a fact node will receive an uninterrupted pulse if and only if

gave Susan something"). The encoding fully specifies how the dynamic bindings represented in the system's state of
a predicate is encoded. Observe that in addition to p-btu activation are such that either an argument is unbound, or if
nodes, the encoding also makes use of pentagon shaped bound, the argument filler in the dynamic binding matches the
i-and nodes that have the following idealized behavior: argument filler specified in the long-term fact. The reader may

1. A i-and node becomes active on receiving an unin- wish to verify that the encodings given in Figures 10 and 11 will
terrupted pulse train, that is, a pulse train such that the behave as expected.
gap between adjacent pulses is less than a spike width. The encoding of the long-term fact give(John, Mary,
Thus a i-and node behaves like a temporal and node. On Book]) will recognize dynamic bindings that represent
becoming active, such - node produces an output pulse dynamic facts such as give(John, Mary, Book]), give
train similar to the input pulse train. (John, Mary, x). give(x, Mary, y), and give(x,yz). How-

2. Note that a i-and node driven by a periodic input ever, it will not recognize those that represent give(Mary,
consisting of a train of pulses of width comparable to the John, Book1) or give(John, Susan, x). Similarly, the en-
period 7r, will produce a periodic train of pulses of width coding of the long-term fact give(John, Susan, x) will
and periodicity rr. We assume that a i-and node can recognize dynamic bindings that encode give(John. Su-
behave in this manner as long as the period of the input san, x), give(x, Susan, y), and give(x, y, z), but not give(Su-
pulse train lies in the interval ['T',,.n, r.fu..I.. sari, John, x) or give(John, Susan, Car7).
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3.4. Dynamic bindings and temporal synchrony can represent and reason with knowledge involving n-ary

Given the representation of dynamic bindings and the predicates and variables. These mechanisms may interact
encoding of rules described in the preceding sections, in different ways to realize different sorts of reasoningeoding ofyiew ruseascrib ted i rnsbehavior. For example, they can lead to a forward-
one may view (1) reasoning as the transient but systematic raoigsse htcnprompeitv neecs
propagation of a rhythmic pattern of activation, (2) an reasoning system that can perform predictive inferences.
object in the dynamic memory as a phase in the above Our discussion in the previous sections was in the context
rhythmic activity, (3) bindings as the in-phase firing of of such a system.
argument and filler nodes, (4) rules as interconnection The proposed mechanisms may also be used to create a

patterns that cause the propagation and transformation of backward-reasoning system that behaves as follows: If the
such rhythmic patterns of activation, and (5) facts as system's state of activation is initialized to represent a

temporal pattern matchers. During an episode of reason- query, it attempts to answer the query based on the

ing, all the arguments bound to a filler become active in knowledge encoded in its LTKB. A backward-reasoning
the same phase as the filler, thereby creating transient system may be generalized to perfonn explanatory infer-
"temporal frames" of knowledge grouped together by ences. If the state of such a system is initialized to

temporal synchrony. This can be contrasted with "static" represent an input "situation," it will automatically at-

frames of knowledge where knowledge is grouped to- tempt to explain this situation on the basis of knowledge

gether, spatially, using hard-wired links and nodes. in its LTKB and a "minimal" set of assumptions.

The system can represent a large number of dynamic With the aid of additional mechanisms it is possible
bindings at the same time, provided the number of to design a system that performs both predictive and ex-

distinct entities involved in these bindings does not ex- planatory inferences. Such a system would make predic-

ceed Lir, /wj , where Tr,,,,. is the maximum period (or tions based on incoming information and at the same time
the lowest frequency) at which p-btu nodes can sustain seek explanations for, and test the consistency of, this
synchronous oscillations and w is the width of the window information.
of synchrony. Recall that a window of synchrony of w
implies that nodes firing with a lag or lead of less than (a/2 4 A backward-reasoning system
of one another are considered to be in synchrony. (We
discuss biologically plausible values of 7r and wo in sect. 7.2 This section describes a backward-reasoning system
and the psychological implications of these limits in sect. based on the representational mechanisms described in
8.) As described thus far, the system allows the simul-taneous representation of a large number of dynamic facts section 3. The system encodes facts and rules in its LTKB
but only supports the representation of one dynamic fact and answers queries on the basis of this knowledge. For
per predicate. (In sect. 6 we discuss a generalization of the example, if the system encodes rules Vx,yz [give(x,yz) =ý>proposed representation that allows multiple dynamic own(yz)] and Vu,v [own(u,v) => can-sell(u,v)], and the
facts pertaining to each predicate to be active simul- long-term fact "John bought Porsche7," it will respond yes
taneously.) to queries such as, Does John own Porsche7? or Can John

lthoughslyn s sell something? The time taken to respond yes to a query
Although synchronous activity is central to the repre- is only proportional to the length of the shortest deriva-

sentation and propagation of binding, the system does not tion of the query and is independent of the size of therequire a global clock or a central controller. The propaga- LTKB.
tion of in-phase activity occurs automatically - once the In subsequent sections we describe several extensions
system's state of activation is initialized to represent an of the backward-reasoning system. In section 5 we show
input situation by setting up appropriate dynamic bind- how the system may be combined with an IS-A hierarchy
ings, the system state evolves automatically to represent that encodes entities, types (categories), and the
the dynamic bindings corresponding to situations that super-/subconcept relations between them. The aug-
follow from the input situation. mented system allows the occurrence of types, non-

Reasoning is the spontaneous outcome of the system's specific instances of types, as well as entities in rules,
behavior. The system does not encode syntactic rules of facts, and queries. This in turn makes it easier to encode
inference such as modus ponens. There is no separate the appropriateness aspect of rules. An extension of the
interpreter or inference mechanism in the system that e approri aspectiof rules. An extensoofte
manipulates and rewrites symbols. The encoding of the system to perform abduction is described in A(janagadde
LTKB is best viewed as a vivid internal model of the (199).
agent's environment. When the nodes in this model are
activated to reflect a particular situation in the environ-
ment, the model simulates the behavior of the external 4.1. The backward-reasoning system - a functional
world and dynamically creates a vivid model of the state of specification
affairs resulting from the given situation. The system is
clearly not a rule following system. At the same time it is The reasoning system can encode rules of the form:17
not rule described or rule governed in the sense that a VX, .... x,,, IP,(... ) A I,,(... )... A P,,(...) : 3z,.
falling apple is. As Hatfield (1991) argues, the system is Q( ..

best described as being rule instantiating. The arg..ents of Pis areclements of 1x(. x2 ..)/1 An
argument of Q is either an element of {x, x. . . . . X,,,}. or

3.5. From mechanisms to systems an clement ofl{z, z.. z.}. or a c(ostant. It is required
The mechanisms propos('d in the previous s('ctions pro- that any variable occurring in multiple alrgiln('nt posi-
vide the Im)ildilig blocks fozr a (1n0mctioiiist system that tions in th" aint('a'(lent ofa rule must also appear ill the
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consequent. 18 The significance of this constraint is dis- Table 1. Interprftation of somne queries and their annourm
cussed in section 4.9. Additional examples of rules are:

Vxy.t [omnipreaent(x) 4 present(x,!t)J yes-no form wA-form

Anyone who is omnipresent is present everywhere at Query (answer) (answer)

all times; oum(MaryBalJ1) Does Mary own

Vx,y [born(x,y) 4 3t presenmx,yt)] Baill?

Everyone must have been present at his or her birth- (yes)

place sometime. can-seil(Mary, Can Mary sell

Vx [triangle(x) 4> number-of-sides(x, 3)] Book]) Booki?
(yes)

Vx,y [sibling(x,y) A born-together(x,y) => twins(xy)J can-seli(Maryx) Can Mary sell What can Mary

Facts are assumed to be partial or complete instantia- something? sell?
tions of predicates. In other words, facts are atomic (yes) (Bookl, Balll)
formulae of the form P(tl,t 2 ... tk), where tts are either
constants or distinct existentially quantified variables. own(x,y) Does someone Who owns
Some examples of facts are: own something? something?

gie(john, Mary, Booki); John gave Mary Book1. (yes) (Susan, Mary,
give(x, Susan, Ba//2); Someone gave Susan Ball2. John)
buy(John x); John bought something. What is owned by
own(Mary, BallR); Mary owns Balll. someone?
omnipresent(x); There exists someone who (Bookl, BalRl,

is omnipresent. BaUl2)
triangle(A3); A3 is a triangle. can-sell(John,x) Can John sell What can John
sibling(Susan, Mary); Susan and Mary are sib- something? sell?

lings. (yes) (something, but
born-together(Susan, Susan and Mary were don't know what)
Mary); born at the same time.
A query has the same form as a fact. A query, all of present(x,North- Was someone pre- Who was present

whose arguments are bound to constants, corresponds to pole,1/1189) sent at northpole at northpole on
the yes-no question, "Does the query follow from rules on 1/1/89? 1/1/89?
and facts encoded in the long-term memory of the sys- (yes) (There was some-
tem?" A query with existentially quantified variables, one, but don't
however, has several interpretations. For example, the know who)
query P(a,x), where a is a constant and x is an existentially number-of- Does A3 have 4
quantified argument, may be viewed as the yes-no query: numer-of- des?
"Does P(a,x) follow from the rules and facts for some value sides(A3,4) sides?
of x?- Alternatively this query may be viewed as the wh- (no)
query: "For what values of x does P(a,x) follow from the can-sell[Mary, Can Mary sell
rules and facts in the system's long-term memory?" Table Ball2) Ball2?
1 lists some queries, their interpretation(s), and their (no)
answer(s).

In describing the backward reasoner we begin by twmns(Susan, Are Mary and Su- -

making several simplifying assumptions. We assume that Mary) san twins?
rules have a single predicate in the antecedent and that (yes)
constants and existentially quantified variables do not
appear in the consequents of rules. We also restrict
ourselves to yes-no queries at first. Subsequent sections
will provide the relevant details. drawn pointing downwards and is named c:[predicate-

name]. The enabler, e:P, of a predicate P has to be
4.2. Encoding rules and facts in long-term memory activated whenever the system is queried about P. As we

shall see, such a query may be posed by an external
Figure 12 depicts the encoding of the rules Vx,yz process or generated internally by the system during an
[give(x,yz) > own(yz)J; Vx,y [buy(x,y) > own(x,y)]; and episode of reasoning. On the other hand, the system
Vx,y [own(x,y) 4 can-sell(x,y)], and the facts gitv(John, activates the collector, c:P, of a predicate P whenever the
Mary, Bookl), buy(John, x), and own(Mary, Ball]). current dynamic bindings of the arguments of P match the

As stated in section 3, a constant (i.e., an entity) is long-term knowledge encoded in the system. Each fact is
represented by a p-btu node, and an n-ary predicate is encoded using a distinct r-and node that is intercon-
represented by a pair of r-and nodes and n p-btu nodes. nected with appropriate enabler, collector, argument,
One of the "-and nodes is referred to as the enabler and and entity nodes (see sect. 3.3).
the other as the collector. An enabler is drawn pointing A rule is encoded by connecting (1) the collector of the
upward and is named e:Ipredicate-name]. A collector is antecedent predicate to the collector of the consequent
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the query and argument bindings are represented by the
-A •synchronous activation of the appropriate entity and argu-

ment nodes.
w •3. The query predicate is specified by activating e:P,

the enabler of the query predicate P, with a pulse train of
Swidth and periodicity wr starting at time to.

Observe that posing a query simply involves activating
the enabler node of the query predicate and the argu-
ments and fillers specified in the query. There is no

&M Vacentral controller that monitors and regulates the behav-
ior of individual nodes at each step of processing.

SNI,, 4.4. The Inference process for yes-no queries

J" 0 Once a query is posed to the system, its state of activation
9Wk, 0 evolves automatically and produces an answer to the
0 so query. The activation of the collector node of the query

predicate indicates that the answer to the query is yes.
The time taken by the system to produce a yes answer
equals 2ar(l + 1), where it is the period of oscillation of
nodes and I equals the length of the shortest derivation ofFigure 12. A network encoding the rules Vx,z /give(x, y, z) the query. "9 If the collector node of the query predicate=> own(y, z)], Yx,y [buy(x, y) •' oum(x, y)], and Yx,y [own(x, y) does not receive any activation within 2(d + 1) periods of

: can-seli(x, y)]; and the long-term facts give(John, Mary,
Book)). buy(John, x), and own(Mary, Book2). The links be- oscillations, where d equals the diame! the inferen-
tween arguments are in the reverse direction because the rules tial dependency graph, the answer to ry is "don't
are wired for "backward reasoning." know." If we make the closed-world ash on,2° then a

don't-know answer can be viewed as a im answer.
We illustrate the inference process with the help of an

predicate, (2) the enabler of the consequent predicate to example (see Fig. 12). Consider the query can-sell(Mary,
the enabler of the antecedent predicate, and (3) the Book))? (i.e., Can Mary sell Bookl?). This query is posed
argument nodes of the consequent predicate to the argu- by providing inputs to the entities Mary and Book), the
ment nodes of the antecedent predicate in accordance arguments p-seller, cs-obj, and the enabler e:can-sell, as
with the correspondence between these arguments spe- shown in Figure 13. Observe that Mary and -seller
cified in the rule (see Fig. 12). Notice that the links are
directed from the arguments of the consequent predicate
to the arguments of the antecedent predicate. The direc- cz,/--'
tion of links is reversed because the system performs CO.-, /"V"V'V-
backward reasoning. C:"

F1

4.3. Posing a query: Specifying dynamic bindings "4"

A query is a (partially) specified predicate instance of the 0,
form P(t1 ..... t,)?, where ts are either constants (enti- ."
ties) or existentially quantified variables. Therefore, pos- b-O j

ing a query to the system involves specifying the query • 1 jl'l 1'[ I'
predicate and the argument bindings specified in the oN,•
query. We will assume that only one external process w
communicates with the reasoning system. The possibility ....r
of communication among several modules is discussed in °can-se,
section 10.4 (also see sects. 10.1-10.3). Let us choose an Sook, i3. i'1
arbitrary point in time - say, to - as our point of reference sIi, , I
for initiating the query. The argument bindings specified ML,

in the query are communicated to the network as follows: peLf,,

1. Let the argument bindings involve m distinct enti- input to I' 0V-

ties: c1 ..... c,. With each ci, associate a delay 8i such itM 0ir•
that no two delays are within w of one another and the inp, to--,,°

longest delay is less than it - o. Here w is the width of the ip" '° •'ok

window of synchrony, and 7r lies in the interval ir, input to M,

• "IT T o 1 2 3 4 5 6 7 a 9 t0ni

2. The argument bindings ofan entity c, are indicated Figure 13. Activation trace for the query can-sellMary.
to the system by providing an oscillatory spike train of Book1)? (Can Man, sell BookI?). The quten is posed hy provil-

periodicity ir starting at to + 8i. to c, and all arguments of ing an oscillatory inptl to e:Can-sell. Mar1. Book]. p-s.fler. and
the qupery predicate bound to c,. As a result, a distinct cs-ohj as shown. The activation of c:cau-sell iolicates wi
p)hase is associate'd with each distinct entity introdihc'(d ii answ er.
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receive synchronous activation and so do Booki and cs- The encoding of rule (3) is down in Figure 14. It uses a new type
obj. Let us refer to the phase of activity of Mary and of node, which we refer to as a -r-or node (node g in Fig. 14).
Bookl as phase-I and phase-2, respectively. Such a node behaves like a temporal or node and becomes active

As a result of the inputs, Mary and p-se/ler fire syn- on receiving any input above its threshold and generates an
chronously in phase-i, whereas Booki and cs-obj fire oscillatory response with a period and pulse width equal to
synchronously in phase-2 of every period of oscillation. w.., the maximum period at which the p-btu nodes can sustain
The node e:can-sell also oscillates and generates a pulse synchronous activity.
train of periodicity and pulse width u. The activations Node gl projects inhibitory modifiers to links between argu-
from the arguments p-seller and cs-obi reach the argu- ment and enabler nodes that can block the firing of the rule. The
ments owner and o-obj of the predicate own, and conse- node gl ensures that the rule participates in an inference only if
quently, starting with the second period of oscillation, all the conditions implicit in the consequent of the rule are met.
owner and o-obj become active in phase-I and phase-2, The first condition concerns the occurrence of existentially
respectively. Thereafter, the nodes Mary, owner, and quantified variables in the consequent of a rule. Observe that
p-seller are active in phase-i, whereas the nodes Booki, such a rule only warrants the inference that there exist some
cs-obi, and o-obj are active in phase-2. At the same time, filler of an existentially quantified argument and, hence, cannot
the activation from e:can-sell activates e:own. At this point be used to infer that a specific entity fills such an argument.
the system has essentially created two dynamic bindings Therefore, if an existentially quantified variable in the conse-
- owner = Mary and own-object = Book]. Given that quent of a rule gets hound in the reasoning process, the rule
e:own is also active, the system's state of activity now cannot be used to infer the consequent. With reference to rule
encodes the internally generated query own(Mary, (3), the desired behavior is achieved by the link from the
Book])? (i.e., Does Mary own Bookl?). existentially quantified (fourth) argument of Q to gl and the

The fact node associated with the fact own(Mary, Balll) inhibitory modifiers emanating from gl. The node gl will
does not match the query and remains inactive. Recall become active and block the firing of the rule whenever the
that fact nodes are r-and nodes and hence become active fourth argument of Q gets bound to any filler.
only upon receiving an uninterrupted pulse train (see The second condition concerns the occurrence of entities in
sect. 3.3). Since BaUl is not firing, the inhibitory activa- the consequent of a rule. Rule (3) cannot be used if its fifth
tion from the argument node owner interrupts the activa- argument is bound to any entity other than a. In general, a rule
tion going from e:own to the fact node and prevents it from that has an entity in its consequent cannot be used if the
becoming active, corresponding argument gets bound to any other entity during

The activation from owner and o-obj reaches the argu- the reasoning process. In the encoding of rule (3), this constraint
ments recip and g-obj of give, and buyer and b-obj of buy, is encoded by link from the fifth argument of Q to gl that is in
respectively. Thus beginning with the third period, argu- turn modified by an inhibitory modifier from a. If the fifth
ments recip and buyer become active in phase-i, whereas argument of Q gets bound to any entity other than a, gi will
arguments g-obj and b-obj become active in phase-2. In become active and block the firing of the rule.
essence, the system has created new bindings for the If the same variable occurs in multiple argument positions in
arguments of predicates can-sell and buy. Given that the the consequent of a rule, it means that this variable should
nodes e:buy and e:give are also active, the system's state of either remain unbound or get bound to the same entity. This
activity now encodes two additional queries: give(x, Mary, constraint can be encoded by introducing a node that receives
Booki)? and buy(Mary, Booki)?.

The fact node representing the fact buy(John, x) does
not become active because the activation from e:buy is
interrupted by the inhibitory activations from the argu-
ments buyer and b-obj. (Notice that John is not active.)
The fact node F1, associated with the fact give(John, P
Mary, Book1) however, does become active as a result of
the uninterrupted activation it receives from e:give. Ob-
serve that the argument giver is not firing and the inhibi-
tory inputs from the arguments recip and g-obj are
blocked by the synchronous inputs from Mary and Book1,
respectively. The activation from F1 causes c:give to
become active, and the output from c:give in turn causes
c:own to become active and transmit an output to c:can-
sell. Consequently c:can-sell, the collector of the query fra•a,
predicate can-sell, becomes active, resulting in an aflir-
mative answer to the query. 6 0

Q
4.5. Encoding rules with constants and repeated variables Figure 14. Encoding rules with existentially quantified vari-

in the consequent ables and constants in the consequent: The network encodes the
rule Vxl,x2,. IP(xl, x2) > 3z Q(xl, x2, y, z, a)J. This rule must

In this section we describe how rules containing constants not fire during the processing of a query, if either the existen-
(entities) .arnd/or existentially quantified variables in tlw on)se- tially bound argument z gets bound, or the last argument gets
quent are enxoded. C(onsider the rule: IX)und to a constant other than a. The node gl is a "r-or nioe. It

projects inhibitory mondifiers that block the firing of the rule if
Vx).x2.ty 1i'ýxl.x2.) 3z Q xI.x2,y.z.a) (3) he' abome coIdition is violate(d.
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inputs from all the arguments that correspond to the same P 0
variable, and becomes active and inhibits the firing of the rule
unless all such arguments are firing in synchrony. Observe that
due to the temporal encoding, arguments bound to the same
entity will fire in the same phase and, hence, a node need only
check that the inputs from appropriate argument nodes are in
synchrony to determine that the arguments are bound to the
same entity. Consider the network fragment, shown in Figure
15, that depicts the encoding of the rule Vx P(x) • Q(x,xa). The
node g2 is like a r-or node except that it becomes active if it
receives inputs in more than one phase within a period of
oscillation. This behavior ensures that the firing of the rule is
inhibited unless the appropriate arguments are bound to the
same entity. Figure 16. The encoding of the rule Vx,yP(x, y) A Q(y, x) ::

R(x, y). The T-and node labeled g3 has a threshold of 2. Multiple
4.6, Encoding mln tl, antecedent rubs antecedent rules are encoded by using an additional -r-and node

A rule with conjunctive predicates in the antecedent, that is, a whose threshold equals the number of predicates in the ante-
cedent. This node becomes active on receiving inputs from the

rule of the form P,(. •-) A P,(...) A ... P_(...) Q(... ), is collector nodes of all the antecedent predicates.
encoded using an additional r-and node that has a threshold of
m. The outputs of the collectors of P, .... , m are connected to
this node, which in turn is connected to the collector of Q. This
additional node becomes active if and only if it receives inputs
from the collector nodes of all the m antecedent predicates. The 4.7. Answering w /-queries

interconnections between the argument nodes of the ante- As stated in section 4.1, a query with unbound arguments
cedent and consequent predicates remain unchanged. Figure can be interpreted either as a yes-no query or a wh-query.
16 illustrates the encoding of the multiple antecedent rule To answer a yes-no query the system need only determine
Yx,yP(x,y) A Q(yx) =' R(x,y). The r-and node labeled g3 has a whether there exist some instantiations of the unbound
threshold of 2. arguments. To answer a wh-query, however, the system

must also determine the instantiations of unbound argu-
ments for which the query is true. We describe how the
proposed system can be extended to do so.

P Consider the proof of the query can-sell(Maryx)? with
respect to the network shown in Figure 12. The yes-no
version of this query will be answered in the affirmative
and the two relevant facts own(Mary, Ball)) and
give(John, Mary, Book]) will become active. The answer
to the wh-query What can Mary sell? simply consists of
the entities bound to the arguments g-obj and b-obj,
respectively, of the two active facts. Observe that the
arguments g-obj and b-obj are precisely the arguments
that map to the unbound argument cs-obj of can-sell via
the rules encoded in the system. The system can extract
this information by the same binding propagation mecha-

92 g1 nism it uses to map bound arguments. A straightforward
way of doing so is to posit an answer extraction stage that
occurs after the yes-no query associated with the wh-

from a query has produced a yes answer. For example, given the
query What can Mary sell? the system first computes the
answer to the yes-no query Can Mary sell something? and
activates the facts that lead to a yes answer, namely,
own(Mary, Ball)) and give(John, Mary, Book)). The

Figure 15. Encoding rules where the same variable occurs in answer extraction stage follows and picks out the entities
multiple argument positions in the consequent: The network Ball] and Bookl as the answers.
encodes the rule Vx P(x) => Q(x, x, a). The rule must fire only if a In order to support answer extraction, the representa-
multiply occurring variable is unbound, or all occurrences of the tion of a fact is augmented as shown in Figure 17. The
variable are bound to the same constant. The node g2 is like a representation of a fact involving an n-ary predicate is
T-or node except that it becomes active if it receives inputs in modified to include n + I additional nodes: For each of
more than one phase within a period of oscillation. On becoming th
active it activates the -r-or node gl. The firing of gl blocks the e n arguments there is a two-input p-btu node with a
firing of the rule whenever the first and second arguments of Q threshold of 2. We refer to such a node as a binder node.
get bound to different constants. (The encoding also enforces The other node (shown as a filled-in pointed pentagon) is
the constraint that the last argument of Q should not be bound to like a "r-and node except that once activated, it remains so
any constant other than a.) even after the inputs are withdrawn (for several periols of
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4.9. Contauhtits on Ohe kom of ruins
The encoding of rules described thus far enforces (1) the

"M =: correspondence between the arguments of the anteced-
"ent and consequent predicates in a rule, and (2) equality

Oo among arguments in the consequent of a rule. in certain
cases, however, it is difficult for the backward-reasoning
system to enforce equality among arguments in the ante-
cedent of a rule. Consider the rule Vx,y P(xx,y) => Q(y)
and the query Q(a)?. The processing of this query will
result in the dynamic query P(?,?,a)? - where the first
and second arguments will be left unspecified. Conse-

0_.• ,, quently, the system cannot enforce the condition implicit
in the rule that a long-term fact involving P should match
the query Q(a) only if its first and second arguments are

Figure 17. Augmented representation of a long-term fact in bound to the same constant. Performing such an equality
order to support answer extraction. For each argument of the test is complicated in a system that allows multiple predi-
associated predicate there exists a p-btu node with a threshold of cates in the antecedent of rules and the chaining of
2. The node shown as a filled-in pentagon behaves like a -r-and inference. Consider the rule Vx,y P(x,y) A R(x,y) >= Q(y)
node except that once activated, it stays active for some time -say about 2f - even after the inputs are withdrawn. and the query Q(a)?. 'Me predicates P and R may be

derivable from other predicates by a long sequence of rule

application. Hence to derive the query Q (a)? the system

oscillations). This node, which we will refer to as a latch may have to test the equality of arbitrary pairs of argu-
dan input from the ment fillers in a potentially large number of facts distrib-

node, receives an ANSWER input and uted across the LTKB. It is conjectured that nonlocal and

At the end of the first stage, the fact nodes correspond- exhaustive equality testing cannot be done effectively in

ing to all the relevant facts would have become active. The any model that uses only a linear number of nodes in the
output of these nodes in conjunction with the ANSWER size of the LTKB and time that is independent of the size

signal will turn on the associated latch nodes and provide Contrast the situation described above with one

one of the two inputs to the binder nodes. If the associated wherast the ru atis described abd th one

yes-no query results in a yes answer (i.e., the collector of wherein the rule is Vxy P(xxy) 4' Q(x) and the query is

the query predicate becomes active), the desired un- Q(a)?. The dynamic query resulting from the processing

bound arguments of the query predicate are activated in a of the query Q(a)? will be P(a,a,y)?. Notice that now the
ditnt pargusents The activation ofphed e argentsivatedn- a condition that the first and second arguments of P should
distinct phase. The activation of these arguments even- be the same is automatically enforced by the propagation
tually leads to the activation of the appropriate arguments of bindings and is expressed in the dynamically generated

in the facts relevant to answering the query. This provides

an input to the appropriate binder nodes of these facts. query at P. The crucial feature of the second situation is

Because the binder nodes were already receiving an input that x, the repeated variable in the antecedent of the rule,

from a latch node, they become active and produce an also appears in the consequent and gets bound in the

output that activates the associated entities in phase with reasoning process. Thus, for the system to respond to a

the appropriate query arguments. The answer to the wh- query, any variable occurring in multiple argument posi-

query (i.e., the entities that fill the argument a, of the tions in the antecedent of a rule that participates in the
query) (ilbe. answering of the query should also appear in the conse-
query) will be precisely those entities that are active in quent of the rule and get bound during the query-
phase with a,. The time taken by the answer extractionstep is bounded by the depth of the inferential depen- answering process. This constraint is required in a
dency graphp backward-reasoning system but not in a forward-

reasoning system. In the latter, the rule Vx,yz P(x,y) A

Q(y,z) => R(x,z) would be encoded as shown in Figure 18.
The "r-or node with a threshold of 2 receives inputs from

4.8. Admltting function tnner the two argument nodes that should be bound to the same

The expressiveness and reasoning power of the system filler. It becomes active if it receives two inputs in the
same phase and enables the firing of the rule via inter-

can be extended by allowing restricted occurrences of mediary p-btu and "r-and nodes. This ensures that the
function terms in rules and facts. Function terms intro- rule fires only if the second and first arguments of P
duce new entities during the reasoning process. But given and Q, respectively, are bound to the same filler. In
that entities are represented as a phase in the pattern of the case of forward reasoning, a rule that has variables
activity, an entity introduced by a function term can he occurring in multiple argument positions in its conse-
represented by an additional phase in the rhythmic activ- quent can participate in the reasoning process provided
ity. Thus the reference to aother-of(Tomiy during an such variables also appear in its antecedent and get bound
episode of reasoning should lead to activity in a distinct during the reasoning process. The restrictions mentioned
phase. This phase would represent the "mother of Tom," above on the form of rules exclude certain inferences
and any arguments bound to the "mother of Tom'" would (we discuss these exclusions and their implications in
now fire in this phase. A provisional solution along these sect. 8.2).

lines is described by Ajjanagadde (1990).
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Figure 18. Encoding a rule with repeated variables in the r W

antecedent within a forward reasoning system. The figure shows
the encoding of the rule Vx,yz P(x, y) A Q(1 z) => R(x, z). This C
rule should fire only if the two arguments in the antecedent _
corresponding to variable y get bound to the same constant. The
i-or node with a threshold of 2 receives inputs from the two
argument nodes that should be bound to the same filler. It Type Hierarchy
becomes active if it receives two inputs in the same phase and
enables the firing of the rule via intermediary p-btu and T-and Figure 19. Interaction between a rule-based reasoner and an
nodes. These nodes have suitable thresholds. IS-A hierarchy. The rule component encodes the rule Vx,y

preys-on(x, y) :' scared-of(y, x) and the facts Vx.,Cat, y:Bird
preys-on(x, y), and 3x:Cat Vy:Bird loves(x, y). The first fact is
equivalent to preys-on(Cat, Bird) and states that cats prey on

5. Intgrating the rule-bam reasoner birds. The second fact states that there is a cat that loves all
with an IS-A hierarchy birds.

The rule-based reasoner described in the previous sec-
tion can be integrated with an IS-A hierarchy represent- part of the network in Figure 19 encodes the rule Vx,y
ing entities, types (categories), the instance-of relations [preys-on(x,y) > scared-of(yx)], and the facts Vx:Cat,
between entities and types, and the super-/subconcept y:Bird preys-on(x,y) and 3x:Cat, Yy:Bird loves(x,y).
relations between types. For convenience, we will refer The first fact says "cats prey on birds" and is equivalent
to the instance-of, superconcept, and subconcept rela- to preys-on(Cat, Bird). The second fact states "there
tions collectively as the IS-A relation. The augmented exists a cat that loves all birds." The type hierarchy in
system allows the occurrence of types as well as entities in Figure 19 encodes the IS-A relationships: is-a(Bird, Ani-
rules, facts, and queries. Consequently, the system can mal), is-a(Cat, Animal), is-a(Robin, Bird), is-a(Canary,
store and retrieve long-term facts such as "Cats prey on Bird), is-a(Tweety, Canary), is-a(Chirpy, Robin), and is-
birds" and 'John bought a Porsche" that refer to types (Cat a(Sylvester, Cat). Facts involving typed variables are
and Bird) as well as nonspecific instances of types (a encoded in the following manner: A typed, -universally
Porsche). The system can also combine rule-based reason- quantified variable is treated as being equivalent to its
ing with type inheritance. For example, it can infer "John type. Thus Vx:Cat, y:Bird preys-on(x,y) is encoded as
owns a car" and "Tweety is scared of Sylvester" (the latter preys-on(Cat, Bird). A typed, existentially quantified
assumes the existence of the rule "If x preys-on y then y is variable is encoded using a unique subconcept of the
scared of x" and the IS-A relations "Sylvester is a Cat" and associated type. Thus in Figure 19, 3x:Cat Vy:Bird
"Tweety is a Bird"). Combining the reasoning system with loves(x,y) is encoded as loves(Cat-1, Bird), where Cat-1 is
an IS-A hierarchy also facilitates the representation of the some unique instance of Cat. In its current form, the
appropriateness aspect of a rule. Recall that appropriate- system only deals with facts and queries wherein all
ness concerns the applicability of the systematic aspect of existential quantifiers occur outside the scope of universal
a rule in a given situation, depending on the types of quantifiers.
argument fillers involved in that situation. As we shall For now let us assume that (1) each concept2 1 (type or
see, the augmented system allows knowledge in the IS-A entity) in the IS-A hierarchy is encoded as a p-btu node,
hierarchy to interact with the encoding of the systematic (2) each IS-A relationship, say is-a(A, B), is encoded using
aspects of a rule in order to enforce type restrictions and two links - a bottom-up link from A to B and a top-down
type preferences on argument fillers. link from B to A, and (3) the top-down and bottom-up

The integration of the reasoner with the IS-A hierarchy links can be enabled selectively by built-in, automatic
described below is a first cut at enriching the representa- control mechanisms. How this is realized is explained in
tion of rules. We only model the instance-of, subconcept, section 5.2.
and superconcept relations and suppress several issues The time course of activation for the query scared-
such as a richer notion of semantic distance, frequency- oj(Tweety, Sylvester)? (Is Tweety scared of Sylvester?) is
and category-size effects, and prototypicality (e.g., see given in Figure 20. The query is posed by turning on
Lakoff 1987). e:scared-ofand activating the nodes Tweety and Sylvester

Figure 19 provides an overview ofthe encodingand rea- in synchrony with the first and second arguments of
soning in the integrated reasoning system. The rule-base scared-of. respectively. The bottom-up links emanating
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are represented by a single p-btu node because the node
animad cannot fire in synchrony with both Tweety and
Sylvester at the same time. Second, the encoding must

F1 provide built-in mechanisms for automatically controlling
the direction of activation in the IS-A hierarchy so as to

ae n• jl deal correctly with queries containing existentially and
cpro" :universally quantified variables. The correct treatment of

mere, ['quantified variables - assuming that all IS-A links are
cat indefeasible, that is, without exceptions22 - requires that

S• • l [1 J'rL...L]__ activation originating from a concept C that is either an
J L entity or the type corresponding to a universally quan-

-:m__V_-o_ •tified variable in the query should propagate upwards to
all the ancestors of C. The upward propagation checks if
the relevant fact is universally true of some superconcept

sa of C. The activation origination from a concept C that
30- 5•lve appears as an existentially quantified variable in the query

TWe• . should propagate to the ancestors of C, the descendants of
WA o.9cmrd •o C, as well as the ancestors of the descendants of C.2 3 A

#" Lw,•, possible solution to these problems has been proposed by
VW to wMani and Shastri (1991) and is outlined below.

rsv, 1. 5.2. Encoding of the IS-A hierarchy

0 , 2 3 s * * * a WM Each concept C represented in the IS-A hierarchy is
Figure 20. Activation trace for the query scared-of(Tweety, encoded by a group of nodes called the concept cluster for
Sylvester)?, (i.e., Is Tweety scared of Sylvester?). C (see middle of Fig. 21). The concept cluster for C has k,

banks of p-btu nodes, where k, is the multiple instantia-

tion constant and refers to the number of dynamic instan-
from Tweety and Sylvester are also enabled. The activa- tiations a concept can accommodate. In general, the value
tion spreads along the IS-A hierarchy, and eventually
Bird and Cat start firing in synchrony with Tweety and k

Sylvester, respectively. At the same time, the activation c",.mui ac
propagates in the rule base. As a result, the initial query C,,.
scared-of(Tweety, Sylvester)? is transformed into the
query preys-on(Cat, Bird)?, which matches the stored IC-cam ,P "
fact preys-on(Cat, Bird) and leads to the activation of ROMOM e.W I
c:preys-on. In turn c:scared-ofbecomes active and signals
an affirmative answer. bnM

There are advantages to expressing certain rules as Co
facts. Although the reasoning system described in section
4 can use rules to draw inferences, it cannot retrieve the
rules per se; for knowledge to be retrievable, it must be in
the form of a fact. Hence integrating the rule-based
reasoner with an IS-A hierarchy has added significance,
because it allows certain rulelike knowledge to be ex-
pressed as facts, thereby making it retrievable in addition
to being usable during inference. Consider "Cats prey on C
birds." The rule-based reasoner can only express this as
the rule Vx, y Cat(x) A Bird(y) > preys-on(x, y) and use it
to answer queries such as preys-on(Sylvester, Tweety)?.
It, however, cannot answer queries such as preys-on(Cat, Cam
Bird)? that can be answered by the integrated system. T.U ,,4

5.1. Some technical problems

Two technical problems must be solved in order to inte-
grate the IS-A hierarchy and the rule-based component.
First, the encoding of the IS-A hierarchy should be U,".n oe
capable of representing multiple instantiations of a con- Figure 21. Structure of the concept cluster for C and its
cept. For example, in the query discussed above, the interaction with the bottom-up and top-down switches. The
concept animal would receive activation originating at cluster has three banks of nodes and is capable of storing up to
Tuwety as well as Sylvester. We would like the network's three distinct instances of the concept (in other words, the
state of activation to represent both the aninmal Tweety multiple instantiation constant k, equals three). The t and
and the animal Sylvester. This cannot happen if concepts relay n(ods have a threshold of 2.
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of k, may vary from concept to concept, but for ease of respond to incoming activation. Any input activation only alleo.ts
exposition we will assume that it is the same for all node S , because the switch inputs directly connect to S,. S,
concepts. In Figure 21, k, is three. Each bank of concept becomes active in response to the first available input and
C consists of three p-btu nodes: C,, Cj t, Cj 1. Each C, can continues to fire in phase with the input as long as the input
represent adistinct (dynamic) instantiation ofC. The relay persists. As S, becomes active, the T-or node associated with S,
nodes C, and Cj 1 control the direction of the propaga- turns on and enables S,. However, inhibitory feedback from C,
tion of activation from C,. The nodes Ci t and C, 4 have a ensures that S. is not enabled in the phase in which C, is firing.
threshold of two. Note that C, is connected to C, t and Thus S, can start firing only in a different phase. Once S2 starts
Ci I, and C, 1 is linked to C, I. firing, S3 gets enabled, and so on.

Every concept C is associated with two subnetworks - Note that C, could receive input in two phases, one from its
the top-down and bottom-up switches. These switches bottom-up switch and another from its top-down switch. C,.
are identical in structure and automatically control the being a p-htu node, fires in only one of these phases. At any
flow of activation to the concept cluster. A switch has k, stage, if C_ 1 5 i - k, picks up activation channeled by the other
outputs. Output, (1 <- i s kj) from the bottom-up switch switch, feedback from C, into the T-or node associated with S,
connects to C, and Ci T, whereas outputi from the top- causes S,+, to become enabled, even though S, may not be
down switch goes to nodes C, and C,. . the bottom-up firing. The net result is that as instantiations occur in the concept
switch has kln,.b inputs and the top-down switch has cluster, the p-btu nodes in the switch get enabled, in turn, from
kins,,,u inputs, where nr., and n.,,, are the number of sub- left to right in distinct phases.
and superconcepts of C, respectively. There are also links An IS-A relation of the form is-a(A, B) is represented as
from the C1 nodes to both switches. The interaction shown in Figure 23 by (1) connecting the A,T, i = 1, ..... k.
between the switches and the concept cluster brings nodes to the bottom-up switch for B, and (2) connecting the B,j ,

about efficient and automatic dynamic allocation of banks i = 1 ..... k, nodes to the top-down switch for A.
in the concept cluster by ensuring that (1) activation gets Consider a concept C in the IS-A hierarchy. Suppose C,
channeled to the concept cluster banks only if any "free" receives activation from the bottom-up switch in phase p. In
banks are available, and (2) each instantiation occupies response, C, starts firing in synchrony with this activation. The
only one bank. C, t node now receives two inputs in phase p (one from the

The architecture of the switch (with k, = 3) is illustrated in bottom-up switch and another from C,; see Fig. 21). Since it has
Figure 22. The k, p-btu nodes, S, . . Sk,. with their associ- a threshold of 2, Cj , also starts firing in phase p. This causes
ated T-or nodes form the switch. Inputs to the switch make two activation in phase p to eventually spread to the superconcept of
connections - one excitatory and one inhibitory - to each of C. Hence any upward-traveling activation continues to travel
S. .... , Sk,. As a result of these excitatory-inhibitory connec- upward, which is the required behavior when C is associated
tions, nodes S2.  Sk, are initially disabled and cannot with a universally typed variable. Similarly, when C, receives

activation from the top-down switch in phase p, both C, and C,
become active in phase p. C, , soon follows suit because of the
link from C, I to Cj t. Thus eventually the whole ill' hank starts

oUtW °firing in phase p. This built-in mechanism allows a concept

1806 fedacio.~aCk associated with an existentially typed variable to eventually

B 1

AA

Representation

top-dcown
bow, -up switch for A

Figure 22. Architecture of a switch that mediates the flow of s
activation into concept clusters. The depicted switch assumes
that the associated cluster can represent up to three instances. A
The switch provides a built-in and distributed control mecha-
nism for automatically allocating hanks within a ctoncept cluster.
Each distinct incomiu i nz istani iatiom is dire(ted to a (listi ict Figui me 23. E1(0odig o<'i the' IS-A rlat io i's -a,'. . 10, .-% I ndilhe
hbak. provided ouc is avaihilab'. of k, links is shown as a single lin.
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spread its activation to its ancestors, descendants, and ancestors
of descendants. The switching mechanism introduces an extra
delay in the propagation of activation along IS-A links and,
typically, the switch takes three steps to channel the activation.
In the worst - and also the least likely - case, the switch may
take up to eight steps to propagate activation.

The time taken to perform inferences in the integrated
system is also independent of the size of the LTKB and is .' .

proportional only to the length of the shortest derivation of the
query. The time taken to perform a predictive inference is
approximately 11 r + 31,9w, where 1, and 1 are the lengths of the
shortest chain of rules, and the shortest chain of IS-A links,
respectively, that must be traversed in order to perform the Figure 24. Encoding rules with typed variables: The network
inference. The time required to answer a yes-no query is fragment encodes the rule Vx: animate,y: solid-ojw ulk-into(x,
approximately max(l~w, 312w) + l1ir + 2r.24 y) * hurt(z). The numbers associated with nodes denote

thresholds (only thresholds other than I have been indicated
explicitly). The i-or node a (b) become active if and only if the

5.3. Typed varlables In quWni first (second) argument node of walk-into fires in synchrony with
Consider a query P(.... x .... .)?, where the jtah argu- the concept animate (solid-obi). Once active, these nodes en-
ment is specified as a typed variable x. If x is universally able the propagation of binding to the predicate hurt. Thus type

quantified, that is, the query is of the form Vx: C P(..., restrictions are enforced using temporal synchrony.

x,. .. ), C and Ci are activated in phase with the fh
argument node of ; (the subscript i refers to one of the ing at an entity, the inhibitory link originates at the
banks of C). if x is existentially quantified, that is the concept representing the type of the universally quan-
query is of the form 3x: C P( ... I x, ... ), Ci and C, 1 are tified variable. The encoding of a typed existentially
activated in phase with the jth argument node of P. As quantified variable is similar to that of a typed universally
before (sect. 4.3), an untyped variable in a query is not quantified variable except that the inhibitory link origi-
activated. Simple queries of the type is-a(C, D)? are nates from a unique subconcept of the associated concept
posed by simply activating the nodes C, and C, t and (for details refer to Mani & Shastri 1991).
observing whether one or more D~s become active. The rule V x:animate, y:solid-obj walk-into(xy) > hurt(x) is

logically equivalent to the rule V x,y animate(x) A solid-obj(y) A
&.4. Encoding appropriateness as type re tridonsw on ualk-into(x,y) > hurt(x). Thus it would appear that the IS-A5.4. ment fillersS hierarchy is not essential for encoding type restrictions on rules.

argulmet flhIeti Note, however, that although the former variant has only one

The IS-A hierarchy can be used to impose type restric- predicate in' the antecedent, the latter has three. This increase
tions on variables occurring in rules. This allows the in the number of antecedent predicates can be very costly,
system to encode context-dependent rules that are sensi- especially in a forward-reasoning system capable of supporting
tive to the types of the argument fillers involved in multiple dynamic predicate instantiations (Mani & Shastri
particular situations. Figure 24 shows the encoding of the 1992). In such a system, the number ofnodes required to encode
following rule in a forward-reasoning system: Vx:animate, a rule is proportional to k•, where k, is the bound on the number
y:solid-obj walk-into(x,y) = hurt(x) (i.e., If an animate of times a predicate may be instantiated dynamically during
agent walks into a solid object, the agent gets hurt). The reasoning (see sect. 6), and mn equals the number of predicates in
types associated with variables specify the admissible the antecedent of the rule. Thus it is critical that rn be very
types (categories) of fillers, and the rule is expected to fire small. The IS-A hierarchy plays a crucial role in reducing the
only if the fillers bound to the arguments are of the value of m by allowing restrictions on predicate arguments to be
appropriate type. The encoding makes use of i-or nodes expressed as type restrictions.25
that automatically check whether the filler of an argument
is of the appropriate type. Thus the i-or node a in Figure
24 would become active if and only if the first argument of 5 Enoding soft and defeilb rules
walk-into is firing in synchrony with animate, indicating The proposed solution to the binding problem can be
that the filler of the argument is of type animate. Sim- generalized to soft/defeasible rules. Observe that the
ilarly, the '-or node b would become active if and only if strength of dynamic bindings may be represented by the
the second argument of walk-into is firing in synchrony degree of synchronization between an argument and a
with solid-object, indicating that the filler of this argu- filler (this possibility was suggested by Jed Harris, per-
ment is of type solid-object. The activation of nodes a and sonal communication). Such a scheme becomes plausible
b would enable the propagation of activity from the if each argument is encoded by an ensemble of nodes (see
antecedent to the consequent predicate. In a forward sect. 7.3), for then the degree of coherence in the phase of
reasoner, typed variables are allowed only in the anteced- firing of nodes within an argument ensemble can indicate
ent of the rule. the strength of the binding the argument is participating

In the backward reasoner, typed variables are allowed in. In the limiting case, a highly dispersed activity in an
only in the consequent of a rule. The encoding of a typed argument ensemble may mean that the argument is
universally quantified v:,,riable in the consequent is simi- bound to one of the active entities, although it is not clear
lar to the encoding of an entity in the consequent of a rule which (Shastri 1993a).26
explained in section 4.5 (see Fig. 14). Instead of originat- In addition to specifying a mechanism for representing
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the strength of dynamic bindings and rule firing, we also bank containing a collector, an enabler, and n argument
need to specify the basis for computing these strengths. It nodes. For a given predicate, P, the enabler of the i'h. bank
is customary to view the strength of a rule as a numerical e:P, will be active whenever the Pth bank has been instanti-
quantity associated with a rule (e.g., certainty factors in ated with s• ,ie dynamic binding. The collector c:P, of the
MYCIN; Buchanan & Shortliffe 1984). Such as "atomic" and ith bank will be activated whenever the dynamic bindings
uninterpreted view of the strength of a rule is inadequate in the ith bank match the knowledge encoded in the
for modeling rules involving n-ary predicates. Our ap- LTKB. Figure 25 depicts the encoding of two binary
proach involves defining the "strength" of a rule (and predicates P and Q and a ternary predicate R.
similarly, the strength of a binding) to be a dynamic Given that a predicate is represented using multiple
quantity that depends upon the types/features of the banks of predicate and argument nodes, the connections
entities bound to arguments in the rule at the time of rule between arguments of the antecedent and consequent
application. Such a strength measure also generalizes the predicates of a rule have to be mediated by a "switching"
notion of type restrictions on rules to type preferences on mechanism similar to the one described in section 5.2.
rules. Thus instead of rules of the form Vx : animate, y : The switch automatically channels input instantiations
solid-obj walk-into(x,y) => hurt(x), the system can encode into available banks of its associated predicate. It also
rules of the form: ensures that each distinct instantiation occupies only one

x,y walk-into(x,y) => [with strength bank, irrespective of the number of conwequent predi-
ty lk-ino(x),ty)] > [ih strength cates that may be communicating this instantiation to the

u(type(x),type(y))] • hurt(x), switch.

where the strength of the rule may vary from one situation With the inclusion of the switch in the backward rea-
to another as a function, cr, of the types of the argument soning system, the number of nodes required to repre-
fillers in a given situation. Observe that the value of o(t,, sent a predicate and a long-term fact becomes propor-
t) need not be known for all types ti and tj in the IS-A
hierarchy, and may be inherited. For example, if o'(t 1 , t2)
is not known but oa(t,., tj) is, and t1 and t2 are subtypes of
tm and t., respectively, then or(tm, t.) can be used in place D
ofU0(t1 , t2 ). This is analogous to property inheritance in an
IS-A hierarchy, where property values may be attached to r
just a few concepts and the property values of the rest of
the concepts inferred via inheritance. The proposed
treatment would allow the system to incorporate excep-
tional and default information during reasoning. This
relates to Shastri's (1988a; 1988b) work on a connectionist
semantic network (see sect. 9.2).

6. Representing multiple dynamic instantlations
of a predicate

The representation of dynamic bindings described thus
far cannot simultaneously represent multiple dynamic
facts about the same predicate. The proposed representa- b

tion can be extended to do so by generalizing the scheme
for encoding multiple instantiations of concepts outlined
in section 5.2. The extension assumes that during an
episode of reflexive reasoning each predicate can be
instantiated only a bounded number of times. In general,
this bound may vary across predicates and some critical P,,,O Pm•R

predicates may have a marginally higher bound. For ease Figure 25. The encoding of predicates for accommodating
of exposition, however, we will assume that this bound is multiple instantiations: P and Q are binary predicates and R is a
the same for all predicates and refer to it as k2 . The ability ternary predicate. The encoding assumes that any predicate
to handle multiple instantiations of the same predicate may be instantiated at most three times (i.e., the multiple
allows the system to deal with more complex inferential instantiation constant k2 = 3). An n-ary predicate is represented
dependencies, including circularities and bounded recur- by k2 banks of nodes. The connections suggest that there are two
sion. The system can make use of rules such as Vx,y rules, one of the form P(') Q0and the other of the form P0 =>
sibling (x,y) =:> sibling (yx). A forward-reasoning system RO (the argument correspondence is not shown). The connec.
can use a rule such as Vx,yz greater (x,y) A greater(yz) tions between antecedent and consequent predicates of a rule
>greater(x,z)and infer"a is greaterthan c"on being told are mediated by a "switching" mechanism similar to the one

described in Figure 22. The switch for P automatically channels
"a is greater than b" and "b is greater than c.'" incoming instantiations of P into available banks of P. The switch

Since up to k2 dynamic instantiations of a predicate may has k2 output "cables," where each cable consist! of output links
have to be represented simultaneously, the representa- to a predicate bank of P. The inputs to the switch are cables fromi
tion of an n-ary predicate is augmented so that each banks of predicates that are in the consequent of rules in which P
predicate is represented by k 2 banks of nodes, with each o(curs in the antecedent.
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tional to k2 and the number of nodes required to encode a 7.1.1. Temporal synchrony and dynamic bindings in the
rule becomes proportional to k4. Furthermore, the time cat visual cortex. Neurophysiological findings also sup-
required for propagating multiple instantiations of a pred- port the hypothesis that the dynamic binding of visual
icate increases by a factor of k2. Thus there are significant features pertaining to a single object may be realized by
space and time costs associated with multiple instantia- the synchronous activ ity of cells encoding these features
tion of predicates. The complete realization of the switch (see Eckhorn et al. 1990; Engel et al. 1991). In one
and its interconnection is described in Mani and Shastri experiment, multiunit responses were recorded from
(1992). four different sites that had overlapping receptive fields

but different orientation preferences - 1570, 670, 220, and
900, respectively. A vertical light bar resulted in a syn-

7. Biological plausibility chronized response at sites I and 3, whereas a light bar
oriented at 670 led to a synchronized response aL sites 2

Recent neurophysiological data suggest that synchro- and 4. A combined stimulus with the two light bars
nous, rhythmic activity occurs in the brain and that the superimposed led to activity at all the four sites, but
time course of such activity is consistent with the require- although the activity at sites I and 3 was synchronized and
ments of reflexive reasoning. The data also provide evi- that at sites 2 and 4 was synchronized, there was no
dence in support of the hypothesis that the cat visual correlation in the activity across these pairs of sites (Engel
system solves the dynamic-binding problem by using et al. 1991). Such experimental evidence suggests that the
temporal synchrony. synchronous activity in orientation specific cells may be

the brain's way of encoding that these cells are participat-

7.1. Neurophysiologkal support ing in the representation of a single object. This is analo-
gous to the situation in Figure 9, wherein the syn-

There is considerable evidence for the existence of rhyth- chronous activity of the nodes recip, owner, and cs-seller
mic activity in the animal brain. Synchronous activity has in phase with Mary is the system's way of encoding that all
been documented for some time in the olfactory bulb, these roles are being filled by the same object, Mary.
hippocampus, and the visual cortex (Freeman 1981; Ger-
stein 1970; MacVicar & Dudek 1980; Toyama et al. 1981). 7.2. Some neurally plausible values of system
The most compelling evidence for such activity, however, parameters
comes from findings of synchronous oscillations in the parameters
visual cortex of anesthetized cats responding to moving The neurophysiological data cited above also provide a
visual stimuli (Eckhorn et al. 1988; 1990; Engel et al. basis for making coarse but neurally plausible estimates of
1991; Gray & Singer 1989; Gray et al. 1989; 1991). These some system parameters. The data indicate that plausible
findings are based on the correlational analysis of local estimates of 'Tr,. and "tr,,., may be 12 and 33 msec,
field potentials and multiunit, as well as single-unit, respectively, and a typical value of r may be 20 msec. The
recordings. Recently, similar activity has also been re- degree of synchronization varies from episode to episode,
ported in an awake and behaving monkey (Kreiter & but a conservative estimate of o, the width of the window
Singer 1992).27 Relevant aspects of the experimental find- of synchrony, may be derived on the basis of the cumula-
ings are summarized below: tive histogram of the phase difference (lead or lag) ob-

1. Synchronous oscillations have been observed at fre- served in a large number of synchronous events. The
quencies ranging from 30 to 80 Hz (a typical frequency is standa; d deviation of the phase differences was 2.6 insec
around 50 Hz). in one data set and 3 msec in another (Gray et al. 1991).

2. Synchronization of neural activity can occur within a Thus a plausible estimate of w may be about 6 msec.
few periods (sometimes even one period) of oscillations Given that the activity of nodes can get synchronized
(Gray et al. 1991). within a few cycles, sometimes even within one, and

3. In most cases synchronization occurs with a lag or given the estimates of ir,,, and i,,•, it is plausible that
lead of less than 3 msec, although in some cases it even synchronous activity can propagate from one p-btu node
ovcurs with precise phase locking (Gray et al. 1991). to another in about 50 msec. The data also suggest that

4. Synchronization of neural activity occurs (a) be- synchronous activity lasts long enough to support epi-
tween local cortical cells (Eckhorn et al. 1988; Gray & sodes of reflexive reasoning requiring several steps.
Singer 1989), (b) among distant cells in the same cortical
area (Gray et al. 1989), (c) among cells in two different
cortical areas - for example, areas 17 and 18 (Eckhorn et m Propagation of synchronous activity - a provisional
al. 1988) and areas 17 and PMLS (Engel et al. 1991), and model
(d) among cells across the two hemispheres (Engel et al. Our system requires the propagation ,of synchronous
1991). activity over interconnected nodes in spite of nonzero and

5. Once achieved, synchrony may last several hundred noisy propagation delays. The neurophysiological evi-
msec (Gray et al. 1991). dence cited in the previous sections suggest that such

The synchronous activity observed in the brain is a propagation occurs in the cortex. The exact neural mecha-
complex and dynamic phenomenon. The frequency and nisms underlying the propagation of such activity, how-
degree of phase locking varies considerably over time and ever, remain to be determined. Abeles (1982; 1991) has
the synchronization is most robust when viewed as a argued, on the basis of anatomical and physiological data,
property ofgroups of neurons. The nature ofssynchronous theoretical analysis, and simulation results that syn-
activity assuni(,( by our model is an idealization of such a chronous activity can propagate over chains of neurons
comlplhx phelnomenon (but see sects. 7.3 & 10. 1-10.4). col('(ected in a man'y-to-maiwy fashion (synlire chains) with
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a small and stable litter," even if random fluctuations are between the firing times of nodes in two connected
taken into account. Bienenstock (1991) has examined how ensembles due to the mean propagation delay is partially
synfire chains may arise in networks as a result of learn- offset by the interaction between the various parameters
ing. Below we outline a provisional model (Mandelbaum of the system enumerated below.
& Shastri 1990) that demonstrates that synchronized The thresnold-time characteristic of a node and the
activity can propagate in spite of noisy propagation de- distribution of the arrival times of input spikes from a
lays. The model is meant to demonstrate the feasibility of preceding ensemble are illustrated in Figure 27. After
such propagation and should not be viewed as a detailed firing, a node enters an absolute refractory period (ARP),
neural model. in which its threshold is essentially infinite. The ARP is

We assume that each argument in the reasoning system followed by a decaying RRP, during which the thresh-
is represented by an ensemble of n nodes rather than just old decays to its resting value. During the RRP, the
a single node. Connections between arguments are en- threshold-time characteristic is approximated as a straight
coded by connecting nodes in the appropriate ensembles: line of gradient g (a linear approximation is not critical).
If ensemble A connects to ensemble B, then each node in The incoming spikes from a preceding ensemble arrive
A is randomly conaected to m nodes in B (m - n). Thus, during a node's ARP and the early part of its RRP. It is
on average, each node in B receives inputs from m nodes assumed that immediate neighbors within an ensemble
in A (see Fig. 26) and has a threshold comparable to m. can rapidly communicate their potential to each other.
The propagation delay between nodes in two different en- A node's potential is the combined result of the interen-
sembles is assumed to be noisy and is modeled as a semble and intraensemble interactions and in the period
Gaussian distribution. If ensemble A is connected to between spikes is modeled as
ensemble B and nodes in ensemble A are firing in syn- Pit + At) = Pit) + Init) + a * Yj[P,4t) - Pit)M,
chrony, then we desire that within a few periods of
oscillation nodes in ensemble B start firing in synchrony where P1(t) is the potential of node i at time t. The change
with nodes in ensemble A. in potential is caused by Indt), the input arriving at node i

Nodes within an ensemble are also sparsely intercon- from nodes in the preceding ensemble as well as the
nected, with each node receiving inputs from a few difference in the potential of i and that of its immediate
neighboring nodes within the ensemble. Synchronization neighborsj. In the simulation, j ranged over siz iminmedi-
within an ensemble is realized as a result of the interac- ate neighbors of i. If nodes i and j are immediate neigh-
tion between the feedback received by a node from its bors and iis firing ahead ofj, then we want i to hasten the
neighbors within the ensemble. The model makes use of firing ofj by sending it an excitatory signal and j to delay
the negative slope of the threshold-time characteristic the firing i by sending it an inhibitory signal. Doing so
during the relative refractory period (RRP) to modulate would raise the potential ofj, causing it to fire early, and
the timing of the spike generated by a node. Observe that lower the potential of i, causing it to fire later in the next
a higher excitation can hasten, while a lower excitation cycle. Thus i and j would tend to synchronize. 28

can delay, the firing of a node. At the same time, the lag The results of a sample simulation are shown in Figure
28. The diagram shows the cycle-by-cycle distribution of
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Figure 28. The cycle-by-cycle distribution of the firing times of nodes within a "driven" ensemble being driven by a "driver"
ensemble whose nodes are firing in synchrony. The left-hand "wall" of the isometric diagram displays the standard deviation and mean
of the node firing times with reference to the ideal firing time. The nodes in the driven ensemble become synchronized in spite of
noisy propagation delays. The maximum lag in the firing times of nodes in the driven ensemble becomes less than 3 msec and the
mean lag becomes less than 1 msec within two cycles. By the end of seven cycles the maximum and mean lags reduce to 1 and 0.2
msec, respectively.

the firing times of nodes within a "driven" ensemble that 8. Psychological Implications
is being driven by a "driver" ensemble whose nodes are
oscillating in phase lock. At~ was chosen to be 0.001 time In this section we examine the psychological implications
units (i.e., all calculations were done every '/zooo of a time of our system, especially in view of the biologically moti-
unit), where a unit of time may be assumed to be 1 msec. vated estimates of the system parameters discussed in
Other simulation parameters were as follows: (1) n, the section 7.3.
number of nodes in ensemble, equals 64; (2) m, the
interensemble connectivity, equals 20; (3) g, the slope of 81. A neurally plausible model of reflexive reasoning
the threshold during the RRP, equals 0.032; (4) ot, the
".coupling" factor between immediate neighbors within an The proposed system can encode specific as well as
ensemble, equals 0.07; (5) d, the average interensemble general instantiation-independent knowledge and per-
propagation delay, equals 4.5 time units; (6) s, the stan- form a broad range of reasoning with efficiency. The
dard deviation of interensemble propagation delay, system makes use of very simple nodes, and yet its node
equals 1.5 time units; and (7) 'w, the expected period of requirement is only linear in the size of the LTKB (the
oscillation, equals 10.5 timne units. size being measured in terms of the number of predicates,

As shown in Figure 28, despite noisy propagation facts, rules, concepts, and is-A relations). Thus the svs-
delays, the naximumn lag in the firing of nodes in the tern illustrates how a large LTKB may be encoded by
"driven" ensemble becomes less than 3 mnsec and the using only a fraction of 1012 nodes.
mean lag becomes less than 1 msec within two cycles. By The system demonstrates that a class of forward and
the end of seven cycles the maximum and mean lags backward reasoning can be performed very rapidly, in
reduce to I and 0.2 insec, respectively, tlime independent of the size of the LTKB. Below we set
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the values of appropriate system parameters to neurally times refers to the variations in the time it takes for nodes
plausible values identified in section 7.3 and indicate the to synchronize and not the time it takes for nodes to
time the system takes to perform certain inferences.2 become active. This suggests that the time course of
These times are, at best, broad indicators of the time we systematic inferences and associative priming may be
expect the internal reasoning process to take. Also note quite different.
that they do not include the time that would be taken by
perceptual, linguistic, and motor processes to process and 8.2. Natur of reflexive reasoning
respond to inputs.

Our model suggests several constraints on the nature of
8.1.1. Some typical retrieval and inference timings. Let us reflexive reasoning. These have to do with (1) the capacity
choose aT to be 20 msec and assume that p-btu nodes can of the working memory underlying reflexive reasoning,
synchronize within two periods of oscillations. The sys- (2) the form of rules that may participate in such reason-
tern takes 320 msec to infer "John is jealous of Tom" after ing, and (3) the depth of the chain of reasoning.
being given the dynamic facts "John loves Susan" and
"Susan loves Tom" (this assumes the rule, if x loves y and y
loves z then x is jealous of z). The system takes 260 msec to 8.2.1. The working memory underlying reflexive reason-
infer "John is a sibling of Jack," given "Jack is a sibling of ing. Dynamic bindings and, hence, dynamic facts are
John." Similarly, the system takes 320 msec to infer represented in the system as a rhythmic pattern of activity
"Susan owns a car" after its internal state is initialized to over nodes in the LTKB network. In functional terms, this
represent "Susan bought a Rolls-Royce." If the system's transient state of activation can be viewed as a limited-
LTKB includes the long-term fact "John bought a Rolls- capacity dynamic working memory that temporarily holds
Royce," the system takes 140, 420, and 740 msec, respec- information during an episode of reflexive reasoning. Let
tively, to answer yes to the queries Did John buy a Rolls- us refer to this working memory as the WMRR.
Royce? Does John own a car? and Can John sell a car? Our system predicts that the capacity of the WMRR is

Thus our system demonstrates that a class of reasoning very large and, at the same time, very limited! The
can occur rapidly, both in the forward (predictive) mode number of dynamic facts that can simultaneously be
as well as backward (query answering) mode. The above present in the WMRR is high and is given by k2p, where
times are independent of the size of the LTKB and do not k2 is the predicate multiple instantiation constant intro-
increase when additional rules, facts, and IS-A relation- duced in section 6, and p is the number of predicates
ships are added to the LTKB. If anything, these times represented in the system. The number of concepts that
may decrease if one of the additional rules is a composite may be active simultaneously is also very high and equals
rule and short-circuits an existing inferential path. For k1 c, where c is the number of concepts in the IS-A
example, if a new rule "ifx buys y then x can sell y" were to hierarchy and k, is the multiple instantiation constant for
be added to the LTKB, the system would answer the concepts introduced in section 5.2. But, as we discuss
query Can John sell a car? in 420 msec instead of 740 below, there are two constraints that limit the number of
msec. dynamic facts that may actually be present in the WM RR

at any given time.
8.1.2. Variations in inference and retrieval times. Consider
two p-btu nodes A and B such that A is connected to B 8.2.2. Working memory, medium-term memory and overt
(although we are referring to individual nodes, the follow- short-term memory. Before moving on let us make two
ing comment would also apply if A and B were ensembles observations. First, the dynamic facts represented in the
of nodes). It seems reasonable to assume that the number WMRR during an episode of reasoning should not be
of cycles required for B to synchronize with A will depend confused with the small number of short-term facts that
on the synaptic efficacy of the link from A to B. This an agent may overtly keep track of during reflective
suggests that the time taken by the propagation of bind- processing and problem solving. In particular, the
ings - and hence rule firing - will vary, depending on the WMRR should not be confused with the (overt) short-
weights on the links between the argument nodes of the term memory implicated in various memory span tasks
antecedent and consequent predicates. Rules whose asso- (for review see Baddeley 1986). Second, our reasoning
ciated links have high weights will fire and propagate system implies that a large number of dynamic facts will
bindings faster than rules whose associated links have be produced as intermediate results during reasoning and
lower weights. It also follows that different facts will take would be represented in the WMRR. These facts, how-
different times to be retrieved, depending on the weights ever, are only potentially relevant and would remain
of the links connecting the appropriate arguments and covert and decay in a short time unless they turn out to be
filler concepts (see Fig. 10). Note that the inhibitory relevant in answering a "query" or providing an explana-
signal from an argument will continue to block the activa- tion. We expect that only a small number of dynamic facts
tion of a fact node until the signals from the filler concepts would turn out to be relevant, and those that do would
and the argument get synchronized. Similarly, during the "'enter" a medium-term memory, where they would be
processing of wh-queries, the time it would take for the available for a much longer time (see sect. 10.5). Some of
filler concepts to synchronize with the binder units will these facts may also enter the overt short-term memory.
depend on the weights of the links from the binder nodes Note that this short-term memory need not he a physi-
to the concept nodes (see Fig. 17). Thus the retrieval of cally distinct module. It may simply consist of facts/
argument fillers would be faster if the weights on the entities in the WMRR that are currently receiving an
appropriate links are high. 3

0 Observe that the variation in attentional spotlight (ef. Crick 1984; Crick & Koch 1990a).
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&.2.3. A bound on the number of distinct entitles refer- of a predicate. As stated in section 6, in a backward-
enced In the WMRR. During an episode of reasoning, each reasoning system, if k2 denotes the bound on the number
entity involved in dynamic bindings occupies a distinct of times a predicate may be instantiated during an episode
phase in the rhythmic pattern of activity. Hence the of reasoning, then the number of nodes required to
number of distinct entities that can occur as argument represent a predicate and the associated long-term facts is
fillers in the dynamic facts represented in the WMRR proportional to k2, and the number of nodes required to
cannot exceed Lrrm..../(i_] , where 'r,,ax is the maximum encode a rule is proportional to ki. Thus a backward-
period (corresponding to the lowest frequency) at which reasoning system that can represent three dynamic in-
p-btu nodes can sustain synchronous oscillations, and w stantiations of each predicate will have anywhere from
equals the width of the window of synchrony. Thus the three to nine times as many nodes as a system that can
WMRR may represent a large number of facts, as long as only represent one instantiation per predicate. In a
these facts refer to only a small number of distinct enti- forward-reasoning system the cost is even higher and the
ties. Note that the activation of an entity together with all number of nodes required to encode a rule is kT', where m
its active superconcepts counts as only one entity. is the number of antecedents in the rule. The time

In section 7.2 we pointed out that a neurally plausible required for propagating multiple instantiations of a pred-
value ofr ..... is about 33 msec and a conservative estimate icate also increases by a factor of k2. In view of the
of w is around 6 rnsec. This suggests that as long as the significant space and time costs associated with multiple
number of entities referenced by the dynamic facts in the instantiation and the necessity of keeping these resources
WMRR is five or less, there will essentially be no cross- within bounds in the context of reflexive reasoning, we
talk among the dynamic facts. If more entities occur as predict that k2 is quite small, perhaps no more than three.
argument fillers in dynamic facts, the window of syn- As observed in section 6, k2 need not be the same for all
chrony w would have to shrink in order to accommodate predicates, and it is possible that some critical predicates
all the entities. For example, w would have to shrink to may have a slightly higher k2 .31
about 5 msec in order to accommodate 7 entities. As o
shrinks, the possibility of cross-talk between dynamic 8.2.5. Form of rules that may participate in reflexive ea-
bindings would increase and eventually disrupt the rea- soning. In section 4.9 we pointed out that when answer-
soning process. The exact bound on the number of dis- ing queries based on the long-term knowledge encoded in
tinct entities that may fill arguments in dynamic facts the LTKB, our reflexive-reasoning system cannot use
would depend on the smallest feasible value of o. Given rules that contain variables occurring in multiple argu-
the noise and variation indicated by the data on syn- ment positions in the antecedent unless such variables
chronous activity cited in section 7.1, it appears unlikely also appear in the consequent and get bound during the
that ao can be less than 3 msec. Hence we predict that a query-answering process. A similar constraint applies to
neu'wally plausible upper bound on the number of distinct forward (predictive) reasoning: When making predictions
entities that can be referenced by the dynamic facts based on given dynamic facts, a system cannot use a rule
represented in the WMRR is about 10. This prediction is that contains variables occurring in multiple argument
consistent with our belief that most cognitive tasks per- positions in the consequent, unless such variables also
formed without deliberate thought tend to involve only a appear in the antecedent and get bound during the
small number of distinct entities at a time (though, of reasoning process. These constraints predict that certain
course, these entities may occur in multiple situations queries cannot be answered in a reflexive manner even
and relationships). though the corresponding predictions can be made reflex-

It is remarkable that the bound on the number of ively. For example, consider an agent whose LTKB in-
entities that may be referenced by the dynamic facts in cludes the rule "if x loves y and y loves z then x is jealous of
the WMRR relates so well to 7 -± 2, the robust measure of z" and the long-term facts "John loves Mary" and "Mary
short-term memory capacity (Miller 1956). This unex- loves Tom." Our system predicts that if this agent is asked
pected coincidence merits further investigation as it sug- Is John jealous of Tom? she will be unable to answer the
gests that temporal synchrony may also underlie other query in a reflexive manner. Note that the antecedent of
short-term and dynamic representations. Similar limita- the rule includes a repeated variable, y, that does not
tions of the human dynamic-binding mechanism are also occur in the consequent. Hence our system predicts that
illustrated in experimental work on the attribute-binding answering this question will require deliberate and con-
problem (Stenning et al. 1988). scious processing (unless the relevant long-term facts are

The bound on the number of distinct entities refer- active in the WMRR for some reason at the time the query
enced in the WM RR is independent of similar bounds on is posed). However, an agent who has the above rule about
the working memories of other subsystems. As we dis- love and jealousy in its LTKB would be able to infer "John
cuss in section 10.4, dynamic structures in the working is jealous of Tom" in a reflexive manner, on being "told"
memory of other subsystems may refer to different sets "John loves Mary" and "Mary loves Tom." This is because
of entities using phase distributions local to those sub- such an inference involves forward (predictive) reasoning.
systems. As another example of the predictions made by the

constraint, assume that our agent's conception of kinship
8.2.4. A bound on the multiple instantiation of predicates. relations is one wherein the maternal/paternal distinction
The capacity of the WMRR is also limited by the con- at the grandparent level is not primary. Let us also assume
straint that it ,nay only contain a small number of dynamic that the agent's maternal grandfather is George. The
facts pertaining to each predicate. This constraint steins constraint predicts that the agent can," :t answer yes to the
from the high cost of maintaining multiple instantiations query Is George ynur maternal grandiather? in a reflexive
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manner even though the agent may be able to answer the length of the derivation leading to the prediction (or the
question Is George your grandfather? in a reflexive man- answer) exceeds this bound. It should be possible to re-
ner (this example is due to Feldman, personal communi- late the bound on the depth of reflexive reasoning to spe-
cation). The basis of this prediction is as follows: If"mater- cific physiological parameters, but at this time we are not
nal grandfather" is not a primary kinship relation then it aware of the relevant data upon which to base such a pre-
must be computed by using an appropriate rule. Given diction. We would welcome pointers to appropriate data.
the nature of the maternal-grandfather relationship, any
rule that does so would violate the repeated variable
restriction. 3 2  8.3. Nature of Inputs to the reflexive reasoner

The restrictions imposed on the reasoning system also Our system demonstrates that rulelike knowledge may be
imply that it is not possible to apply the abstract notion used effectively during reflexive reasoning, provided it is
of transitivity in a reflexive manner when answering integrated into the LTKB and wired into the inferential
queries. Observe that we need to state Vx,yz P(x,y) A dependency graph. It also demonstrates that reflexive
P(y,z) • P(x,z) in order to assert that the relation P is reasoning can effectively deal with small dynamic input in
transitive and the rule has the variable y occurring twice the form of facts.A We suspect that the ability of any
in the antecedent but not even once in the consequent. reflexive-reasoning system to deal with novel rulelike
Given that transitivity plays an important role in com- information will be extremely limited; if the input con-
monsense reasoning - to wit, reasoning about sub- and tains rulelike information that is not already present in the
supercategories, part-of relationships, greater and less LTKB, the agent may have to revert to a reflective mode
than - the inability to handle transitivity might appear to of reasoning in order to use this information. This may
be overly limiting. However, this is not the case. We partially explain why human agents find it difficult to
believe that as far as query answering is concerned, perform syllogistic reasoning without deliberate and con-
humans are only good at dealing with the transitivity of a scious effort even though, in a formal sense, such reason-
small number of relations. In these cases, the transitivity ing is simpler than some of the reasoning tasks we can
of the appropriate relations is encoded explicitly and the perform in a reflexive manner. In syllogistic reasoning,
computation of transitivity does not require the use of an the "input" has the form of rules and the reflexive reasoner
abstract transitivity rule. The organization of concepts in may be unable to use them unless they are already part of
an IS-A hierarchy using IS-A links to capture the sub- the LTKB.
class/superclass relationship is an excellent case in point.
The use of IS-A links converts the problem of computing
the transitive closure from one of applying the transitivity 8.4. The reflexive-reasoning system and production
rule Vx,y,z IS-A(x,y) A IS-A(y~z) :• IS-A(x,z), to one of systems
propagating activation along links. As may be evident, there exists a correspondence be-

tween a production system and the reflexive-reasoning
8.2.6. Bound on the depth of the chain of reasoning. Two system described in this article - the declarative memory
things might happen as activity propagates along a chain corresponds to long-term facts, productions correspond
of argument ensembles during an episode of reflexive to rules, and the working memory corresponds to the
reasoning. First, the lag in the firing times of successive WMRR. Thus our system can be viewed as a parallel-
ensembles may gradually build up due to the propagation production system.
delay introduced at each level in the chain. Second, the Estimates of the working-memory capacity of produc-
dispersion within each ensemble may gradually increase tion system models range from very small (about seven
due to the variations in propagation delays and the noise elements) to essentially unlimited. Ou;r work points out
inherent in synaptic and neuronal processes. Whereas that the working memory of a reflexive processor can
the increased lag along successive ensembles will lead to a contain a very large number of elements (dynamic facts in
"phase shift" and, hence, binding confusions, the in- the case of the reasoning system) as long as (1) the
creased dispersion of activity within successive ensem- elements do not refer to more than (about) 10 entities, and
bles will lead to a gradual loss of binding information. (2) the elements do not involve the same relation (predi-
Increased dispersion would mean less phase specificity cate) more than (about) three times. The proposed system
and, hence, more uncertainty about the argument's filler, also demonstrates that a large number of rules, even those
Because of the increase in dispersion along the chain of containing variables, may fire in parallel as long as any
reasoning, the propagation of activity will correspond less predicate is not instantiated more than (about) three timnes
and less to a propagation of argument bindings and more (ctf Newell's suggestion (1980] that while pro(ductions
and more to an associative spread of activation. For without variables can be executed in parallel. productions
example, the propagation of activity along the chain of with variables may have to be executed in a serial fashion).
rules P,(x,1,z) => P2(x,yz) ::> ... P,,(x,!lz) resulting from A number of cognitive mod(els are based on the prnoduc-
the input P1(a,b.c) may lead to a state of activation where tion system formalism; two of the most comprehensive
all one can say about P,. is that there is an instan(ce of P,, arC ACT* (Anderson 198:3) amid SO(AR (Newell 19(0)). Neu,-
inivolviig the entities a, 1, and c, hut it is not clear which rally plausible realizations ofthese models. however, have
entity fills which role of I,,. not been proposed. Although several aspects of*A(: :* sliih
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neurally plausible explanation of how bindings are propa- long-term knowledge and inferences in reading will in-
gated and how nodes determine whether two bindings are form future work on our model of reflexive reasoning. At
the same. In his exposition of SOAR, Newell has analyzed the same time, we hope that the constraints on the form of
the time course of neural processes to estimate how long rules and the capacity of the working memory underlying
various SOAR operations should take, but he did not reflexive reasoning that have emerged from our work will
suggest how a system such as SOAR may be realized in a help experimental psychologists in formulating and test-
neurally plausible manner (see Newell 1990, p. 440). ing novel hypotheses about the role of reflexive reasoning
Although a complete mapping of comprehensive systems in reading.
such as SOAR and ACT* to a neurally plausible architecture
still remains an open problem, our system could provide a
basis for doing so. In this context, the biologically mo- 8.6. Reflexive reaoning and the tan effect

tivated constraints on the capacity of the WMRR indi- Our initial hypothesis as well as our system's behavior
cated by our system seem particularly significant. suggests that the time taken by reflexive reasoning is

independent of the size of the LTKB. This conflicts with
&5. Rethve reasoning and text understanding the fan effect (Anderson 1983; Beder & Boss 1983); this

effect generally refers to the following phenomenon: The
Several problems will have to be addressed in order to more facts associated with a particular concept, the slower
integrate the proposed reasoning system with a compre- the recognition of any one of the facts. We hypothesize
hensive cognitive system. Some of these problems are that the fan effect applies only to medium-term knowl-
discussed in section 10; they include (1) interactions edge and not to long-term knowledge (we use long-term
between the reflexive-reasoning system and medium- in the sense discussed in sect. 1.1). Consider the nature of
term memory; (2) how medium-term memory is mapped the task that leads to the fan effect. An agent studies a set
into long-term memory; (3) how the set of entities in the of facts until he can recall them. Subsequently, the agent
WMRH changes in a fluid manner; and (4) how distinct is asked to recognize and make consistency judgments
modules performing different reflexive processes (e.g., a about the learned material and his reaction times are
parser and a reasoner) onrmunicate with one another. recorded. It is observed that the time taken to recognize a

The problem of text understanding is particularly rele- fact increases with the number of facts studied by the
vant because there exists a rich body of empirical data on agent involving the same concept(s). Observe, however,
the role of inferencv,• based on long-term knowledge that the fan effect concerns an arbitrary collection of facts
durirng language undL.rstanding. The data strongly sug- that the agent studied prior to the experiment. We hy-
gest that certain types of inferences (i.e., inferences that pothesize that these facts are only encoded in the agent's
help establish referential and causal coherence) do occur medium-term memory and are not assimilated into the
very rapidly and automatically during text understanding agent's LTKB. Thus the fan effect is not about facts in the
(see, e.g., Carpenter & Just 1977; Keenan et al. 1984; LTKB, rather it is about facts in medium-term memory.
Kintsch 1974; McKoon & Ratcliff 1980). The evidence for
the automatic occurrence of elaborative inferences, how-
ever, is mixed (see, e.g., Kintsch 1988; McKoon & Ratcliff 9. Related work
1986; Potts et al. 1988; Singer & Ferreira 1983). Elabora-
tive inferences predict highly likely consequences of In spite of the apparent significance of reflexive reasoning
events mentioned in the discourse and correspond to there have been few attempts at modeling such rapid
forward reasoning in our system. However, as Potts et al. inference with reference to a large body of knowledge.
(1988) point out, available experimental evidence does Some past exceptions are Fahlman's (1979) work on NETL

not rule out the possibility that elaborative inferences are and Shastri's (1988a) work on a connectionist semantic
performed during reading. The experiments involve two- memory (see also Geller & Du 1991). Both these models
sentence texts, and it is likely that the subjects do not have primarily deal with inheritance and classification within
any inherent interest in making predictive inferences. It an IS-A hierarchy. H611dobler (1990) and Uliman and van
may turn out that subjects do make such inferences when Gelder (1988) have proposed parallel systems for per-
reading longer texts. forming more powerful logical inferences, but these sys-

Our system suggests that reflexive reasoning can occur tems have unrealistic space requirements. The number of
in backward as well as forward direction (although, as nodes in Holldobler's system is quadratic in the size of the
pointed out in sect. 8.2, there are critical differences in LTKB, and the number of processors required by Ullman
the form of rules that participate in the two types of and van Gelder is even higher.34 A significant amount of
reasoning). This suggests that agents may perform infer- work has been done by researchers in knowledge repre-
ences required for establishing referential and causal sentation and reasoning to identify classes of inference
coherence as well as predictive inferences in a reflexive that can be performed efficiently (e.g., see Bylander et al.
manner. The system's prediction can be resolved with the 1991; Frisch & Allen 1982; Kautz & Selman 1991; Le-
observed data if we assume that the results of predictive vesque 1988, LIevesque & Brachman 1985; McAllester
inferences only last for a short time (say a ftw hundred 190)). The results, however, have largely been negative.
msec) and then disperse unless subsequent input (text) The few positive results re(ported do not provide insights
indicates that these infer('nces are significant and/or rele- into the problem of reflexive reasoning because they"
rant to the (liscoursc. ()nly those infi'rred facts that turn assume a weak notion of efficiency polvynomial time),
out to be relevant are( cnco(h('( in niedinul-tern mi(emory restrict inference in implausible ways (e.g., hy excluding
and become availableh t a longer time. chaining ofrules), and/or deal with overly limited expres-

"The extelmsivi' bvd\ of t'mmpiri'al data on the rol' of siv,'less ('.... oldy ipropositionall calcimlims).
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9.1. Rotation between N~rL and the proposed system compute and enumerate results of queries involving an
arbitrary sequence of set intersection and set union oper-

It was pointed out in section 3 that as an abstract computa- ations. NETLs central controllercould decompose a query
tional mechanism temporal synchrony is related to the into the required sequence of intersection and union
notion of marker passing. It was also mentioned that operations and instruct NETL to perform these operations
Fahlman (1979) had proposed the design of a parallel in the proper sequence. This is something our reflexive-
marker-passing machine (NETL) that could solve a class of reasoning system does not (and is not intended to) do.
inheritance and recognition problems efficiently. But as NETL also allowed exceptions in the IS-A hierarchy, but
discussed in section 3, NETL was not neurally plausible. its treatment of exceptions suffered from serious semantic
In view of the correspondence between temporal syn- problems (see Fahinan et al. 1981; Touretzky 1986). In
chrony and marker passing, our system offers a neurally sections 5.4 and 5.5 we described how rules with type
plausible realization of marker passing. It is important to restrictions are encoded in our system and explained how
underscore the significance of this realization. First, this encoding may be extended to deal with type prefter-
nothing is stored at a node in order to mark it with a ences so that the appropriateness - or strength - of a rule
marker. Instead, the time of firing of a node relative to firing in a specific situation may depend on the types of
other nodes and the coincidence between the time of the entities involved in that situation. The ability to
firing of a node and that of other nodes has the effect of encode evidential rules will allow our system to incorpo-
marking a node with a particular marker. Furthermore, a rate exceptional and default information in an IS-A hier-
node does not have to match anything akin to markers. It archy (see below).
simply has to detect whether appropriate inputs are
coincident. Second, the system does not require a central
controller. Once a query is posed to the system by 9.2. csN: a connectionist semantic memory
activating appropriate nodes, it computes the solution
without an external controller directing the activity of Shastri (1988a; 1988b) developed CSN, a connectionist
everysemantic network that could solve a class of inheritanc

ever noe atevey stp o prcessng.The ystm ~ and classification problems in time proportional to the
ability to do so stems from the distributed control mecha- depthssficationcptual hie prop uted tsnisms that are an integral part of the representation. depth of the conceptual hierarchy, csN computed its

iSomee pls that sur h an in lpt-in meohani thearep etautiom- solutions in accordance with an evidential formalization
Some examples of such built-in mechanisms that automat- and dealt with exceptional and conflicting information in a
ically control the propagation of activation are the C I, p
and C 4 relay nodes in concept clusters (sect. 5.2), and the principled manner. It found the most likely answers to
switch networks associated with concepts and predicates inheritance and recognition queries by combining the
that automatically direct the flow of activation to unused information encoded in the semantic network. CSN oper-banks (sect. 5.2 & 6). Third, our realization of marker ated without a central network controller that regulated

quans(seti 5.2&6).The ity, ofr reath n w or me ery the activity of its nodes at each step of processing. This
passing quantifies the capacity of the working memory was the result of using distributed mechanisms (e.g.,
underlying reflexive processing in terms of biological anodes) for controlling the flow of activity. A complete
parameters. As we have seen, these constraints have relay
psychological significance. integration of a csN-like system and the proposed reason-

In addition to demonstrating that a marker-passing ing system should lead to a system capable of dealing with

system can be realized in a neurally plausible manner, our evidential and conflicting rules and facts in a principled

system shows that a richer class of representation and manner.

reasoning problems than that realized in NETL can be
solved using temporal synchrony - and, hence, marker 9.3. Some connectionist approachim to the
passing. If we set aside the issue of exceptional knowledge dynamic-binding problem
(see below), NETL represented an IS-A hierarchy and
n-ary facts, where terms in a fact could be types or Feldman (1982) addressed the problem of dynamically
instances in the IS-A hierarchy. NETL, however, did not associating any element of a group of N entities with any
represent rules involving n-ary predicates. NETL derived element of another group of N entities using an intercon-
inherited facts by replacing terms in a fact by their nection network. lie showed how it was possible to
subtypes or instances (this characterization accounts for achieve the association task with an interconnection net-
NETL'S ability to perform simple [unary] inheritance as work having only 4N,32 nodes. The work, however, did not
well as relational inheritance), but it did not combine address how such a representation could be incorporated
inheritance with rule-based reasoning. Consider the ex- within a reasoning system where bindings need to be
ample of relational inheritance where preys-on(Sylvester, propagated.
Tweety) is derived from preys-on(Cat, Bird). Observe Touretzky and Hinton (1988) developed DcPs, a distrib-
that this only involves substituting Sylvester for Cat and uted connectionist production system, to address the
Tweety for Bird on the basis of the IS-A relations is- problem of rule-based reasoning within a connectionist
a(Sylvester, Cat) and is-a(Twe'ety. Bird). This form of framework. The ability of ix:ps to maintain and propagate
reasoning is weaker thain that performed by our system, dynamic bindings is, however, quite limited. First, ix•Ps

Our reasoning system can also encode rules such as Vx,y can only deal with rules that have a single variable.
preys-on(x,y) = scared-of(yx). and given preys-on(Cat. Second, ocPs is serial at the knowledge level, because
Bird) it cannot only infer preys-on(Sylvester, Tweety) but each step in its reasoning process involves selecting and
also scared-of('riceety, Sylvester). applying a single rule. Thirs in terms ofefficienc.s ix:Ps is

The presence of a central controller allowed NETL to similar to a traditional (serial) production system and must
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deal with the combinatorics of search. Third, it assumes relative phase in which a node is firing as such a transient
that there is only one candidate rule that can fire at each signature of the node. The discussion in section 8.2 about
step of processing. Hence it is not a viable model of working memory and medium-term memory (also sect.
reflexive reasoning. 10) suggests how an augmented system that includes

Smolensky (1990) describes a representation of dy- medium-term memory may engage in tasks involving
namic bindings using tensor products. Arguments and inure than 10 or so entities.
fillers are viewed as n and m dimensional vectors, respec- Barnden and Srinivas (1991) have proposed Conposit, a
tively, and a binding is viewed as the n * mi dimensional connectionist production system. In Conposit, patterns
vector obtained by taking the tensor product of the are associated by virtue of the relative position of registers
appropriate argument and filler vectors. The system en- containing these patterns, as well as the similarity be-
codes arguments and fillers as patterns over pools of tween patterns. Argument bindings are propagated by a
n argument and in filler nodes and argument bindings connectionist interpreter that reads the contents of regis-
over a network of n * in nodes. The system can only ters and updates them. We believe that Conposit may be
encode n * in bindings without cross-talk, although a an appropriate architecture for modeling complex reflec-
greater number of bindings can be stored if some cross- tive processes, but it may not be best suited for modeling
talk is acceptable. D)olan and Smolcnsky (1989) describe reflexive reasoning.
TPPS, a production system based on the tensor product Another solution to the binding problem is based on
encoding of dynamic bindings. However, like ocPs, TPPS frequency modulation, whereby dynamic bindings may
is also serial at the knowledge level and allows only one be encoded by having the appropriate nodes fire with the
rule to fire at a time. same frequency (Tomabechi & Kitano 1989).

The primary cause of knowledge-level serialism in Dces
and TPPS is that these systems represent arguments and
fillers as patterns of activity over common pools of nodes. 9.4. Using pettems for propagating bindings
This severely limits the number of arguments, fillers, and
dynamic bindings that may be represented at the same An important aspect of the proposed reasoning system is
time. In contrast, the compact encoding of predicates, the organization of n-ary rules into a directed graph,
arguments, and concepts in our system allows it to repre- wherein the inferential dependencies between anteced-
sent and propagate a large number of dynamic bindings ent and consequent predicates together with the corre-
simultaneously. spondence between the predicate arguments are repre-

Another system that uses compact encoding and sup- sented explicitly. As we have seen, this encoding in
ports knowledge-level parallelism is ROBIN (Lange & conjunction with the temporal representation of dynamic
Dyer 1989). This system was designed to address the bindings leads to an efficient reasoning system. But the
problem of natural-language understanding - in particu- above encoding of rules is significant in its own right. One
lar, the problem of ambiguity resolution using evidential may take this framework for organizing rules and obtain
knowledge. ROBIN and our system have several features in other organizationally isomorphic connectionist systems
common; for example, ROBIN can also maintain a large by using alternative techniques (e.g., frequency encod-
number of dynamic bindings and encode "rules" having ing) for representing dynamic bindings. These systems,
multiple variables. There are also important differences: however, will differ in the size of the resulting network,
ROBIN permanently allocates a unique numerical signa- constraints on the nature of reasoning, reasoning speed,
ture to each constant in the domain and represents dy- and biological plausibility. To illustrate how the suggested
namic bindings by propagating the signature of the appro- organization of rules and arguments may be combined
priate constant to the argument(s) to which it is bound. with alternate techniques for propagating dynamic bind-
The use of signatures allows ROBIN to deal with a large ings, we use the proposed encoding of rules in conjunc-
number of entities during an episode of reasoning. There tion with what may be referred to as the pattern-
is, however, a potential problem with the use of signa- containment approach.as
tures: If each entity has a unique signature, then signa- In the pattern-containment approach we assume that
tures can end up being high-precision quantities. For each argument is represented by aclusterofn nodes, and
example, assigning a distinct signature to 50,000 concepts inferential links between arguments are represented by
will require a precision of 16 bits. Hence propagating connecting the nodes in the associated argument clusters.
bindings would require nodes to propagate and compare An n-dimensional pattern of activity is associated with
high-precision analog values. This problem may be cir- each concept (i.e., an instance or a type), and a dynamic
cumvented by representing signatures as n-bit vectors binding between a concept and an argument is repre-
and encoding arguments as clusters of n nodes communi- sented by inducing the pattern of activation associated
eating via bundles of links (see sect. 9.4). with the concept in the appropriate argument cluster.

The temporal-synchrony approach can be compared to The propagation of dynamic bindings in the system occurs
the signature-based approach as follows: Although the by the propagation (replication) of patterns of activity
total number of entities is very large, the number of along connected argument clusters.
entities involved in a particular reasoning episode is It is instructive to compare the pattern-containment
small. Ihence instead of assigning a distinct signature to approach with the temporal-synchrony approach. The
every entity, it suflfices to assign distinct signatures to only key question is: What is the significance of the pattern of
entities that are participating ins an episode of reasoning. activity that is associated with a concept and propagated
Furthermorem. this assignment need exist only for the across argument clusters? One possibility is that each
duration of a reasoning episode. On(e can interpret the m-diiieisioial patteril encodes the signature associated
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with some concept (Lange & Dyer 1989). As we pointed if the representational mechanisms proposed here are to
out earlier, the value of n would depend on N, the number be applied in an extended setting.
of distinct concepts represented in the system. If we
assume that concepts are assigned arbitrary patterns as
signatures, n would equal log,2N. Alternatively the pat- 10.1. Where do phases odiginait?
tern of activity could encode all the microfeatures of a In a sense, the "source" of rhythmic activity in the pro-
concept (Hinton 1981; Rumelhart & McClelland 1986). posed reasoning system is clearly identifiable: The proc-
Such a pattern, however, would have to be even larger. ess that poses a query to the system provides staggered
Both of these interpretations of patterns make suboptimal oscillatory inputs to entities mentioned in the query and
use of computational resources: Each argument cluster thereby activates them in distinct phases. In a composite
has to be large enough to encode the full signature of a pereptualtingu isti ngt has e r, sn aconcept or all the microfeatures associated with a con- perceptual/linguistic/reasoning system, however, such a
cept. Also, individual bindings have to be propagated by separation in the phase of the firing of distinct entitiespropagating large patterns of activity. An attractive alter- must occur intrinsically. For example, the utterance "Johnnative would be to assume that the patterns associated gave Mary Bookl" should automatically result in thenatith condbepts d ssuri thepropagati ofe bends a rted representations of "John," "Mary," and "Bookl" firing inwith concepts during the propagation of bindings are different phases and synchronously with giver, recipient,some sort of "reduced descriptions." We suggest that the and give-obj, respectively.temporal-synchrony approach does exactly this - albeit in The problems of automatic phase separation and conse-
an unusual manner. During the propagation of bindings, quent segmentation and feature binding has been ad-
the relative phase of firing of an active concept acts as a dressed by several researchers. For example, Horn et al.
highly reduced description of that concept. (1991) demonstrate how an input pattern containing a red

The use of temporal synchrony enables our system square demnslue hol an resut pathe firing a nesto do with one node and one link what the pattern- square and a blue circle can result in the firing of nodes
codontainmnth apoa node s andone link s. That he patter representing the features "red" and "square" in onecontainment approach does using n nodes and links. The phase, and the nodes representing the features "blue" andtemporal approach also leads to a simpleencodingoflong- "circle" in a different phase. The model, however, does
term facts. In contrast, the realization of a long-term fact not work if there are more than two objects. An internal
in the pattern-containment approach will be more com- attentional mechanism similar to the "searchlight" pro-
plex since it must support mn-bit comparisons (where m is
the arity of the fact predicate) to check whether the posed by Crick (1984) may be required for dealing with
dynamic bindings match the static bindings encoded in more elaborate situations.
theyfaic. bIndsetiong 7 h te sug dthati b ingle eideaed) i In the case of linguistic input, we believe that the initialthe fact. In section 7. 3 we suggested that single (idealized) phase separation in the firing of each constituent is the

nodes in our system would have to be mapped to ensem-
bles of nodes and single (idealized) links would have to be outcome of the parsing process. The parser module ex-
mapped to a group of links. This mapping, however, was presses the result of the parsing process - primarily the
required to deal with noise in the system and the pattern- bindings between syntactic arguments and constituents -
containment approach will also have to be augmented in by forcing appropriate nodes to fire in and out of syn-
order to deal with noise. chrony. This is illustrated in a parser for English, de-

signed by Henderson (1991), using the proposed model
for reflexive reasoning.

10. Discussion
10.2. Who reads the synchronous firing of nodes?

We have presented a neurally plausible model for knowl-

edge representation and reflexive reasoning. The model There is no homunculus in our system that "reads" the
supports the long-term encoding of general instantiation- synchronous activity to detect dynamic bindings. In-
independent structures as well as specific situations stead, the synchronous activity is "read" by various long-
involving n-ary relations. It also supports the representa- term structures in the system that do so by simply
tion of dynamic information and its interaction with long- detecting coincidence (or the lack of it) among their
term knowledge. Everything presented in this target inputs. For example, long-term facts read the rhythmic
article, except for the treatment of soft rules (sect. 5.5), activity as it propagates past them and become active
has been simulated. The proposed model makes several whenever the dynamic bindings encoded in the activity
specific predictions about the nature of reflexive reason- are appropriate. Similarly, 'r-or nodes enforce type re-
ing and the capacity of the working memory underlying strictions (e.g., the node a in Fig. 24) hby enabling the
reflexive reasoning. These predictions are verifiable and firing of a rule whenever the appropriate argument anl
we hope that they will be explored by experimental type nodes are firing in-phase. We have also designed a
psychologists. The proposed representational mecha- connectionist mechanism that automaticalhl extracts an -
nisms are quite general and should be applicable to other swers to wh-queries and relays them to an output device
problems in cognition whose formulation requires the (McKcndall 1991). We asSOCiate a code or a "'namel" with
expressive power of n-ary predicates and whose solution each concept. This name has no internal significance and
requires rapid and systematic interactions between long- is me'ant solely for communicating with the system's
te'rm and dynamic structures. These inclide Ipoblems in environment. Fhe nmechanism channels the names of
high-level vision, other proble'ms in language processing concepts that constitute an answer to all ouitpu it liler in
si)ch assyntactic prwoessing, and reactive planning. Be- an interh'aved fashion. For example, the patt('rns for
low w' disc'uss sonie problems that need to be addressed Ball I and Book I %vonhld alternate in the output IIh't'r aft'r
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the wh-query own(Marg x)? is posed with reference to ing John in the two systems may be different? Aaronson
the network in Figure 12. (1991) describes a connectionist interface that allows two

phase-based modules, each with its own phase structure,

10.3. Now are phase recycle? to exchange binding information.

The constraint that computations must involve only a
small number of entities at any given time seems reason- 10.5. Memorizing facts: Converting dynamic bindings to
able if we restrict ourselves to a single episode of reason- static Patterns

ing, understanding a few sentences, or observing a simple In the proposed system, dynamic information is repre-
scene. But what happens when the agent is participating sented as transient rhythmic activity and long-term mem-
in a dialogue or scanning a complex scene where the total ory is encoded by using "hard-wired" interconnections
number of significant entities exceeds the number of between nodes. We have not discussed how appropriate
distinct phases that can coexist. In such situations the set dynamic information may be converted into, and re-
of entities in "focus" must keep changing constantly, with corded as, synaptically encoded long-term structures. A
entities shifting in and out of focus in a dynamic manner. specific problem concerns the conversion of dynamic
Identifying the mechanisms that underlie such internal bindings corresponding to a novel (but salient) fact into a
shifts of attention and cause the system's oscillatory activ- medium-term fact by converting the set of dynamic bind-
ity to evolve smoothly so that new entities start firing in a ings into a set of static bindings that last longer than a few
phase while entities presently firing in a phase gradually hundred milliseconds (perhaps even days or weeks). This
"release" their phase remains a challenging open problem problem has been addressed in Geib (1990) by using
(but see Crick & Koch 1990a). In this context one must recruitment learning (Feldman 1982; Shastri 1988a;
also note that the notion of an entity is itself very fluid. In Wickelgren 1979) in conjunction with a fast weight-
certain situations, John may be an appropriate entity. In change process abstractly modeled after long-term po-
other situations, John's face or perhaps even John's nose tentiation (Lynch 1986). The proposed solution allows a
may be the appropriate entity. one-shot conversion of dynamic facts into a structurally

The notion of the release of phases has a natural encoded fact in the presence of a "learn" signal. It is
interpretation in the parsing system described by Hen- envisaged that subsequently, such medium-term struc-
derson (1992). The parser is incremental and its output is a tures can be converted into long-term structures by other
sequence of derivation steps that leads to the parse. The processes (Marr 1971; Squire 1987; Squire & Zola-
entities in the parser are nonterminals of the grammar, Morgan 1991). The notion of fast synapses proposed by
and hence each active nonterminal must fire in a distinct von der Malsburg (1981) may also play an intermediate
phase. Under appropriate conditions during the parsing role in sustaining memories that must last beyond a few
process - for example, when a nonterminal ceases to be hundred milliseconds.
on the right frontier of the phrase structure - the phase
associated with a nonterminal can be "released" and,
hence, become available for nonterminals introduced by 10.6. Learning rules
subsequent words in the input. This allows the parser to The problem of learning the representation of rules in a
recover the structure of arbitrary long sentences as long as system that uses a temporal representation is no more
the dynamic state required to parse the sentence does not difficult than the problem of learning structured repre-
exceed the bounds on the number of phases and the sentation in connectionist networks. Instead of being
number of instantiations per predicate. triggered by "simple" coactivation, learning must now be

triggered by synchronous activation. Recently, Mozer et
10.4. GeneralizIng the use of synchronous oscillations al. (1991) have demonstrated how backpropagation style

learning may be generalized to networks of nodes that are
Thus far we have assumed that the scope of phase distri- essentially like p-btu nodes. We are addressing the prob-
bution is the entire system. We must, however, consider lem of learning in the concept of preexisting predicates
the possibility where the system is composed of several and concepts where it is desired that the cooccurrence of
modules (say the perceptual, linguistic, or reasoning mod- events should lead to the formation of appropriate con-
ules). If we combine the requirements ofall these modules nections between predicate arguments. A special case
it becomes obvious that ten or so phases will be made- involves assuming generic interconnections between
quate for representing all the entities that must remain predicate arguments, and viewing rule learning as learn-
active at any given time. Thus a temporal coding of ing the correct type restrictions/preferences on argument

dynamic bindings is not viable if a single phase distribu- ille rs. type ac tiev e f yinc e s on

tion must extend across all the modules. Therefore it fillers. This may be achieved by modifying weights on
beonmest ctendiarossal thateeac modulehats. oThee e t links between the type hierarchy and the rule componentbecomes crucial that each module has its own phase (see sects. 5.4 & 5.5).

distribution so that each module may maintain bindings

involving ten or so entities. This, however, poses a prob-
lem: How should modules communicate with each other ACKNOWLEDGM ENTSmannr? Cnsidr a yste whoe viual Thanks to Moshe Aheles, John Baruden, Elie Bielnensto•'k.
in a consistent manner? Consider a system whose visual Gary Cottrell, Mike DyerJerry Feldman, George Gerstein, Pat
module is seeing "John" and whose conceptual module is layves, Geoff Hinton, Christopher von der Malshurg, Jordan
thinking something about John. How should the visual Polla('k. TIerry Sejnowski, Paul Smolensky. Simon Thorpe, Dave
and conceptual modules share information alxmut John liburetzky, an(l several anonyimous refierees lor the'ir ('o011111nts

even though the phase and frequency of the n(oes encod- a;m1l suggestions. Tlianks to 1). R. Mani for his work on tlhe IS-A
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hierarchy interface and the multiple instantiation problem, and For example, the rule relating "giving" and -owning" is an
for simulating the model and generating figures. This research oversimplification and does not capture the richness and corn-
was supported by NSF grant IRI 88-05465, ARO grants plexity of the actual notions of giving and owning.
DAA29-84-9-0027 and DAAL03-89-C-0031, and the DRG grant 8. Although systematicity has broader connotations (e.g., see
Schr 275/7-1. Fodor & Pylyshyn 1988a), we use it here to refer specifically to

the correspondence between predicate arguments stipulated by
NOTES rules.

1. For example, see Allen 1987; Bobrow & Collins 1975; 9. The symbol V is the universal quantifier, which may
Charniak 1976; Corriveau 1991; Dyer 1983; Fahlman 1979; Just formally be interpreted to mean "for all," and the symbol _ý> is
& Carpenter 1977; Kintsch 1974; Lehnert & Ringle 1982; the logical connective "implies." Thus the statement Vu,v
Norvig 1989; Schank & Abelson 1977; Wilensky 1983. [buy(u,v) 4 own(u,v)] asserts that for any assignment of values

2. That reflexive reasoning occurs spontaneously and without to u and v, if u buys v then u owns v.
conscious effort does not imply that the agent cannot become 10. A similar formation of "static" bindings occurs in any
aware and conscious of the result of such reasoning, as in an learning network with hidden nodes. Observe that a hidden
agent's yes response to the question Does John own a car? given node at level I learns to respond systematically to the activity of
"John bought a Rolls-Royce." In many situations, however, the nodes at levels I - 1 and below, and in so doing the network
result of reflexive reasoning may only be manifest in the mental learns new bindings between representations at level I and
state of the agent. For example, during reading the effect of such I - 1. These bindings, however, are static, and the time it takes
reasoning may be manifest primarily in the agent's sense of for them to get established is many orders of magnitude greater
understanding, coherence (or lack thereof), disbelief, humor, than the time within which dynamic bindings must be
and so forth. established.

3. The reflexive/reflective distinction we make here in the 11. Feature binding can be achieved by creating sets of
context of reasoning shares a number of features with the features such that those belonging to the same entity are placed
automatic/controlled distinction proposed by Schneider and in the same set. In terms of expressive power, unary predicates
Shiffrin (Schneider & Shiffrin 1977; Shiffrin & Schneider 1977; suffice to solve this problem. For example, the grouping of
see also Posner & Snyder 1975). Like automatic processing, features belonging to a "red smooth square" and a "blue dotted
reflexive reasoning is parallel, fast, occurs spontaneously, and circle" can be expressed by using unary predicates such as
the agent is unaware of the reasoning process per se. However, red(objl) A smooth(objl) A square(objl) and blue(obj2) A
the working memory underlying reflexive reasoning has specific dotted(obj2) A circle(obj2).
capacity limitations (see sect. 8.2). In formulating the problem of 12. We first described our proposed model in 1990 (Shastri &
reflexive reasoning and developing a detailed computational Ajjanagadde 1990). An earlier version using a central clock was
model for it, we have generalized the notion of automatic reported in Ajjanagadde and Shastri (1989).
processing by bringing into its fold the more conceptual task of 13. As stated in Note 11, unary predicates suffice to solve the
systematic reasoning. feature-binding problem and the expressive power of the

4. If we assume that information is encoded in the firing rate models cited above is limited to unary-predicates (see Hummel
of a neuron then the amount ofinformation that can be conveyed & Biederman 1991). The greater expressive power provided by
in a "message" would depend on AF, the range over which the n-ary predicates would eventually be required by more sophisti-
firing frequency of a presynaptic neuron can vary, and AT, the cated models of visual processing.
window of time over which a postsynaptic neuron can "sample" 14. There are other variants of marker passing (see, e.g.,
the incident spike train. AT is essentially how long a neuron can Charniak 1983; Hendler 1987; Hirst 1987; Norvig 1989) where"remember" a spike and depends on the time course of the "markers" are even more complex messages containing a marker
postsynaptic potential and the ensuing changes in the mem- bit, a strength measure, backpointers to the original and imme-
brane potential of the postsynaptic neuron. A plausible value of diate source of the marker, and sometimes a flag that indicates
AF may be about 200. This means that in order to decode a which types of links the marker will propagate along. The
message containing 2 bits of information, AT has to be about 15 marker-passing system has to process the information contained
msec, and to decode a 3-bit message, it must be about 35 msec. in markers, extract paths traced by markers, and evaluate the
One could argue that neurons may be capable of communicating relevance of these paths. In view of this, such marker-passing
more complex messages by using variations in interspike delays systems are not relevant to our discussion.
to encode information (see, e.g., Strehler & Lestienne 1986). 15. We can generalize the behavior of a p-btu node to account
However, Thorpe and Imbert (1989) have argued that in the for weighted links by assuming that a node will fire if and only if
context of rapid processing, the firing rate of neurons relative to the weighted sum of synchronous inputs is greater than or equal
their available time to respond to their inputs implies that a to n (see sects. 5.5 & 8.1).
presynaptic neuron can only communicate one or twospikes to a 16. In the idealized model each argument is encoded as a
postsynaptic neuron before the latter must produce an output. single p-btu node and, hence, it is reasonable to assume that a
Thus the information communicated in a message remains node may fire in response to a single input. The thresholds of
limited even if interspike delays are used as temporal codes. nodes in the ensemble-based model will be higher and will
This does not imply that networks of neurons cannot represent depend on the average interensemble connections per node.
and process complex structures. Clearly they can. The interest- 17. A constant refers to a specific entity in the domain, the
ing question is how. symbol 3 is the existential quantifier, which may be inter)reted

5. This observation does not presuppose any particular en- to mean "'there exists." Recall that the symbol V is the universal
codling scheme and applies to localist and distributed, as well as quantifier, which may be interpreted to mean "for all." Thus the
hybrid, schemes of representation. The point is purely numieri- statement Vx lperson(x) > 3: ?nother'z,x)] asserts that for
cal - any encoding scheme that requires n 2 nodes to represent every person x there exists some z such that z is the mother ofx.
an ITKB of size ra will requirkc 1)11i nodes to represent an ITKB The symbol A is the logical connective "and.'"
of size 108. 18. The system can encodle first-order, fiunction-free Horn

6. This hypothesis does not conflict with the fan effect (An- Clauses with the added restriction that any variable (occurring in
lte'rson 19.$3ý sc also se('t. 8.)f. muiltiple argunmenit positions in the antecedent of a rule inust

7. The rules used in this and other examples arc onlyv meant also appear in the consequent. I lohn Clauses tormn the basis of
to illustrate the dylynalmiic-bind ing problem and ar(e not inten(ded l H ll()G(;, a prograillm i ming lamgimag' used extensi clv in artilicial
(4) he a detailhd c'harac(t('rizatioll of, (otiimlionse'lse kmowh'(zdg,. ihtellig(e.nce (Se•, e.g., (e'umes'reth & Nilsson 1987).
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19. This time consists of (1) lhr, the time taken by the system is implemented using ncs - the Rochester Connection-
activation originating at the enabler of the query predicate to ist Simulator (Nigel et al. 1989).
reach the enabler of the predicate(s) that are relevant to the 30. The above behaviot generalizes the notion of a "strength"
derivation of the query, (2) 1r, the time taken by the relevant associated with concepts (cf Anderson 1983) and extends it to
fact(s) to become active, (3) ir, the time taken by the active fact(s) rules, IS-A relations, facts, and even individual static bindings
to activate the relevant collector(s), and (4) Ir, the time taken by in the LTKB.
the activation to travel from the collectors of the relevant 31. The cost of realizing multiple instantiation of concepts is
predicate(s) to the collector of the query predicate. considerably lower than that of realizing the multiple instantia-

20. The closed-world assumption simply means that any fact tion of predicates. Thus the value of k, can be higher than three.
F that is neither in the knowledge base nor deducible from the Observe however, that k, need be no more than Lr.=A/wJ .
knowledge base may be assumed to be false. 32. There are several ways of encoding the relevant kinship

21. Here we are using concept to refer only to the entities and knowledge. All these pose the same problem, however: The
types encoded in the hierarchy. This is not to suggest that antecedent of one of the rules contains a repeated variable that
predicates such as give and own that are not represented in the does not occur in the consequent. One possible encoding of the
IS-A hierarchy are not concepts in the broader sense of the relevant knowledge is given below (note that Self refers to the
word. agent and the rest of the names have been chosen arbitrarily to

22. In our formulation, each IS-A link is strict and only complete the example). The long-term facts are grand-
property values are exceptional. This approach for dealing with father(George, Self), mother(Susan, Self), and father (George,
exceptional and defeasible information in IS-A hierarchies is Susan). The rule is Vx,yz grandfather(x,y) A father(x,z) A
explained in Shastri (1988a). mother(z,y) => maternal grandfather(x, y).

23. This is required because a fact is true of some entity of 33. In addition to the constraints on the WMRR, the number
type C if one or more of the following holds: (1) The fact is of dynamic facts that can be communicated to an agent at one
universally true of a superconcept of C, (2) the fact is true of time will be bounded by the rather limited capacity of the overt
some subconcept/instance of C, or (3) the fact is universally true short-term memory.
of a superconcept of a subconcept/instance of C. The last is 34. Ullman and van Gelder (1988) treat the number of nodes
required if concepts in the IS-A hierarchy can have multiple required to encode the LTKB as a fixed cost; hence they do not
parents. refer to its size in computing the space complexity of their

24. These times are approximate because the time required system. If the size of the LTKB is taken into account, the
for propagation along the IS-A hierarchy and the rules may number of processors required by their system turns out to be a
overlap and, hence, the actual time may be less. For example, high-degree polynomial.
the time to perform a predictive inference may also only be 35. The relation between our approach and the pattern-
max(lir, 3.,1r). It is also possible for the actual time to be containment approach was pointed out by Geoff Hinton (per-
greater, because in the worst case it may take up to eight cycles sonal communication).
instead of three to traverse an IS-A link.

25. The number of antecedent predicates (m) in a rule can
also be reduced by introducing ancillary predicates. For exam-
ple, the rule Vx,yz P(x, y, z) A Q(x, y, z) A R(x, y, z) => S(x, y, z)
may be replaced by two rules, each of which has only two ante-
cedent predicates: Vx,yz P(x, y, z) A Q(x, y, z) = Sl(x, y, z) and
Vx,y,z Sl(x, y, z) A R(x, y, z) = S(x, y, z). The benefit of reducing Open Peer Commentary
m in this manner has to be weighed against the cost of introduc-
ing an additional predicate in the system. But the savings
outweigh the costs if such a predicate helps in reducing the in Commentary submitted by the qualified professional readership of this
value of several rules. journal will be considered for publication in a later issue as Continuing

26. The reasoning system uses the phase of activation to Commentary on this article. Integrative overviews and syntheses are
encode binding information. Hence, in principle the amplitude especially encouraged.
of activation could be used to represent the "strength" of
dynamic bindings and rule firings. Note however, that the
amplitude of a node's output is encoded by the spiking frequency
and the use of varying frequency to encode rule strengths will
interfere with the encoding of dynamic bindings. Time phases, pointers, rules and embedding

27. While the occurrence of synchronous activity is less
controversial, the occurrence of synchronized oscillations in the John A. Barnden
animal brain and its representational significance is still a matter Computing Research Laboratory & Computer Science Department. New
of controversy. More evidence is needed to establish firmly the Mexico State University, Las Cruces, NM 88003-0001
role of oscillatory activity in neural information processing. Electronic mail: jbamden(anmsu.edu
Some researchers have reported difficulty in demonstrating Binding by time phases is an interesting special case of the
oscillatory activity in the primate visual system using static following very general (temporary) binding method: To bind two
stimuli (e.g., Rolls 1991; Tovee & Rolls 1992). In this context, things, mark them in roughly the same way. Let's call this the
however, it must be recognized that a very small fraction of similar-mark approach. Note that it could apply to nonconnec-
neurons would be expected to participate in an episode of tionist as well as connectionist systems. In Shastri & Aj-
synchronous activity. Furthermore, the grouping of neurons janagadde's (S&A's) case, we may take the marks to be the
would be dymnaiuic and vary considerably from one episode of oscillatory patterns of excitation acquired by argument nodes
reasoning to another. 1 lenet, synehronous oscillations would be and so on. Two marks art' similar enough to constitute a binding
very difficult to detect, if they have sufficiently similar phases (and frequencies). So,

28. A more detailed mnodel of such coupling has since been S&A's method is a special case of the approach of temporarily
developed (.Man(elbauIn 1991). binding connectionist nodes or subnetworks together by dy-

29. Tlhcse tiimiint s were obtained b\ analyzing the simula- namnically making theim hold activation patterns that arc similar
tioims of the reflexive-reasoni ug syst em carried out using a enoulgh in) solne specific seinse. That is, the time-phase method
simuLation svstcn dthvehipv(, 1y \ian i (1991). The simnulation is a special case of "pattero-similarity association" or PSA (Barn-
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den & Srinivas 1991). This is in turn acoUinectionist special case tilled one about all the people in the room, aind tirs cani b"
oi" the similar-mark approach. viewed as a dynamically arising rule.

A •ienefit of couisidering thie ti ne- phase method in the conte xt Now suppose someone sa) s, '"Ibm thought that the imiilk " as
of PSA and similar-mark binding in general is that wsc see the sour. lie went out to buy some more." One needs to lie aide to
close relationship to the technique of "associative addressing" apply the general knowledge that sour milk tends to lie unusable
widely used in specialized computer hardware as all alternative for certain purposes, together with Tom's reported thought, iu
to pointers. With this technique two memory areas can hbe order to understand Tou's motive in going out for more milk, Is
tenmorarily "linked- together by plaeing identical or suffieicntly such reasoning not reflexive? That is, I am suggesting that input
similar bit-strings somewhere within them. Such a bit-string propositions and reasoning episodes involing them call bI
extiacted from one place can he used to find the other plkce or embedded in propositional attitude contexts (among other sorts
places that contain that bit-string or suitably similar ones. In of context, such as counterfactual ones) without mnaking thei
sum, S&A's system, which is one of the few conneetionist reasoning nonreflexive. This makes the task of counnectiou-
systems that call actually perform inferencing ofaany respectable istically implementing reflexive reasoning yet more coulphlex.
complexity, turns out to rest on a binding scheme quite strongly Emnbeddimg and dynamically arising rules are discussed fur-
related to a conventional computer technique, but without using ther in Barnden (1992, pp. 149-78). Because very fiw workers
any close analogue of pointers. in conneetiolismn, oII indeed critics ofeomnectionismn, have even

We are being led here to the question of what happens to the paid lip service to the issues, my comunents are hardly a strike
notion of a pointer when we move away froni comnputers. This against S&A specifically.
question is examined to some extent by Barnden and Srinivas
(199 1). One can define a pointer in a connectionist system to be a
temporary system substate (e.g., activation pattern) that identi-
fies a permanently existing place in the system. However, Plausible inference and implicit
without specific architectural assumptions we cannot say what a
"place" is, other than by resting on the excessively restrictive representation
option of a place just being a single node or on the excessively Malcolm 1. Bauer
loose option of a place being any subset of the systemn's nodes.
Going back to S&A, if the phase assigned to the John node or Department of Psychology, Ptnceton University, Princeton, NJ 08544-1010

assembly, say, were fixed for all time, then phases could be Electronic mall: malcolm(•c/arity.princeton.edu

regarded as pointers, because they would permanently identify Shastri & Ajjanagadde's (S&A's) distinction between reflexive
such nodes or assemblies, However, S&A allow phases to be and reflective reasoning is similar to the distinction between
dynamically assigned, so they are probably radically different implicit and explicit reasoning made by Johnsoni-Laird (1983).
from "pointers" under any usefully narrow construal of that Implicit reasoning is rapid, effortless, and occurs outside con-
word. The signature scheme in ROBIN (Lange & Dyer 1989) is scious awareness. It is basically model building without the.
more pointerlike, because signatures are statically assigned. deliberate search for alternatives. Explicit reasoning requires

One major benefit of similar-mark techniques is that they deliberate, conscious effort and calls for the search for alterna-
allow bidirectional binding in two senses. (1) A binding could be tive models that may invalidate ami inference. S&A's work is
conceptually bidirectional; one might, for instance, say that if hence an attempt to create a detailed account of implicit reason-
several S&A argument nodes have the same phase they are ing. They accordingly write that their system "simulates the
bidirectionally bound to each other. (2) A binding, though behavior of the external world and dynamically creates a vivid
perhaps conceptually unidirectional, could be used bidirec- model of the state of affairs resulting from the given situationi"
tionally. For instance, a node oscillating at a certain phase might (sect. 3.4). This is an important and innovative area of research
broadcast its oscillation to other nodes, thereby causing similar- but there are some weaknesses in their theory.
phased nodes to light up in some special way, hut the same thing First, S&A avoid the important question of how people make
could be done starting at any of those nodes (sec also Touretzky a limited number of plausible inferences from the vast set of
1990). By contrast, computer pointers can only efficiently be possible inferences. From any premise, there follow an infinite
used in one direction. number of valid deductions and inductive hypotheses (for exam-

A disadvantage of many similar-mark schemes, however, is pie, continually conjoining the premise with itself generates a
that if a binding is conceptually unidirectional, one needs countably infinite set of valid deductions). The mnechanistis by
something extra to specify direction. That something could be which people reason must greatly constrain the inferences they
highly implicit in the overall system architecture; thus, the draw. For example, Johnson-Laird (1988) prolposes that whem
binding between an S&A argument node and the John node is, people make deductive inferences they draw conclusions that
arguably, conceptually unidirectional, and that fact is implicitly maintain the semantic information in the premises, and when
respected in the whole way that the system operates. However, they make inductive generalizations they draw conclusions that
if one needed unidirectional bindings between argument nodes increase semantic information. S&A avoid the issue by hand
for some reason, one would need to do something more than coding only those inference patterns they judge to be plausible.
simply give them the same phase. Given the premise "John gave Mary bookl" S&A decide that

A concern I have about many connectionist systems, includ- "Mary owns bookl" and "Mary can sell bookl' are two plausiblc
ing S&A's, is that they may face difficulty in encompassing inferences. However, the constraints on which inferences art'
certain important types of reasoning, including some reflexive drawn are not part of their theory, but are in tile heads of the
types. S&A claim it is unlikely that the input propositions to researchers.
reflexive reasoning episodes can be dynamically arising rules. I Second, S&A's notion of "'miodel" is problematic. .Mohdls
take the point of their syllogism example, but there are more capture the structure of tite world. One can perform analogmms
mundane examples that are uot so 'asily disposed of. For operations on models and nmake infereices about the- state ofilhc
instance, suppoise someone says, "All the people at the party world from the new state ofthe mnodel. An important property of
were toothbrush salespersons. Some of them even had their models is their ability to represent information implicitly. In so
sample cases with them. "The obvious inferemnce that those cases doing, liod'els ('all represent whole classes of infe('rence('s that catin
contained toothbrumshes seems no less a catndidate for being be made expli'it, if needed, with further reasoning. This kind of
dubbed "reflexive" than do the inferences in S&A's Little Red representation is quite different fromn encodming st lect'd plamisi-
Riding fhood and Colombiami drug enforcement agency exaul- liiH inference patterns as in S&A's system. S&A impll that I
ple. Yet oilme of thi' in put propositiomns is the i'niversally quali- model is a finite collection of( plausible imihri'mm( that lltm 1wh
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drawn about a situation. When a situation is partially d,'scribed, the contrary (sect. 2.1. 1). The essence of the binding problem is
the system constructs a chain of inferences. For example, from associating an argument and filler, or variable and value in the
the premise -John drove from his house to the store" some general case. The static-binding solution requires the existence
plausible inferences that follow are, "John left his house" and of a unit for every feasible pairing of variable and value. Such
"John arrived at the store." Equally plausible, though, are "binder" units and their connections are stable long-term fea-
inferences such as "John drove at least halfway to the store," tures of the network; thus, "static." However, it is their activa-
"John drove at least I of the way to the store," and "John drove at tiou that indicates the presence of an actual binding. Thus, the
least ith of the way to the store," and so on. In S&A's system, a static-binding solution is in general capable of dynamically
complete model of the situation would consist of an explicit associating variables and values during the course of a com-
representation of all of the above inferences and an infinity of putation.
other inferences that follow. [See also BBS multiple book review Knee-jerk objections to this idea, motivated by the counterin-
of Sperher & Wilson's Relevance: Communication and Cogni- tuitive nature of unit/value connectionism (Feldman & Ballard
tion, BBS 10(4)1987.] Although it is clear that people can 1982) and the seeming inability of a static structure to support
determine the validity of these inferences, it is unlikely that universal, general-purpose problem solving, can be discounted.
they construct explicit representations for each of the potential Even the most simplistic scheme, allowing each of the n entities
inferences. A model of the premise "John drove from his house in memory to associate with any of the others, requires only
to the store" is not a series of plausible inferences that follow 0(n2 ) nodes. But is even n2 too large? It is on this point that even
from it, but rather a representation that captures the structure of careful connectionists seem to run aground; indeed, this is
John driving from his house to the store. Although an infinite apparently one reason why Shastri, whe in earlier work ex-
number of inferences follows from this model, reflexive reason- ploited static binding (1988a), developed the current work. The
ing does not involve constructing all the plausible inferences; value of n can certainly be expected to be l0P or better, which
rather, it entuils constructing a model that represents the makes n2 too large compared to the available resources in the
situation from which relevant inferences could be drawn as brain,
necessary. This analysis is too simplistic, however. Static binding re-

In summary, Shastri & Ayanagadde must overcome these two quires only that we use a unit for every feasible pairing of
problems (the lack of a theory of plausible reasoning in the variable and value, or argument and filler. If feasible values for
inference mechanism and the inability to represent information variables are restricted by exploiting any kind of type or cate-
implicitly) to make their theory a more credible account of gory knowledge (see also sects. 2.4 & 5.4) and if binder units are
human reflexive reasoning. only allocated for feasible values, the number of required units

reduces dramatically. Cooper and Swain (1992) work this idea
out in some detail, for example, for a massively parallel imple-
mentation of are consistency. If we limit the number of values
per variable to a reasonably large but fixed maximum, the total

Could static binding suffice? number of binder units required is linear in the number of
variables in memory. In other words, it would not be unreason-

Paul R. Cooper able to assume that the node requirement of static binding is at
Institute for the Learning Sciences, Noihwestern University, Evanston, I. least close to linear in the size of the knowledge base, and
60201 certainly much less than n2. Hence static binding can support
Eklw1cr nicmall: cooper(•ds.nwu.edu the basic task of associating simple variables and values.

Dynamic variable binding is widely accepted as a serious chal- The feasibility of static binding becomes less obvious given
lenge for connectionists. Shastri & Ajjanagadde (S&A) have the necessity to reason about combinations or compositions of
more than met that challenge here: This is an elegant proposal simple primitives. On one hand, it is obvious that any value-
with appealing performance characteristics (e.g., independence based encoding just cannot represent all the potential combina-
of the size of the knowledge base) and equally appealing compat- tions, of arbitrary order, that may occur. On the other hand,
ibilities with results from psychology and neuroscience. But the solutions exploiting only low-order combinations, particularly
endeavor of addressing the challenge directly, as well as the pairs (e.g., Feldman 1985), may suffice to explain the simpler
character of the resulting solution, provokes the desire to recon- tasks solved in "reflexive" as opposed to "reflective" or overtly
sider alternatives to a frontal attack on variable binding and rule- sequential reasoning (which would be an interesting result in
oriented reasoning. itself). Complex tasks apparently requiring "systematicity" and

If S&A's solution works and is even elegant, why bother to "composition," such as the recognition ofstructurally composed
worry about whether there is more to consider? First, possibly objects, are also achievable in this way (e.g., Cooper 1992).
the most interesting question for the connectionist enterprise is Finally, the propagation of bindings hardly poses an insur-
this: How much can be done in parallel? The traditional connec- mountable problem. It is exactly the propagation of constraints
tionist approach when cross-talk appears inevitable is to share that forms the basis of the relaxation process used by most
net resources in time. Although S&A's solution can hardly he connectionist networks.
construed as "sequential," it does exploit some time sharing. Possibly the subtlest issue concerns representing truly novel
Improvements may be possible. associations. Clearly, associations exist that a restricted static-

Second, S&A's contribution is motivated in Iscge part by a binding network cannot represent. Representing such associa-
desire to provide a connectionist explanation for traditional rule- tions requires structural changes to the network learning. But
oriented reasoning. There are two dangers here. What if rule- hard learning of entirely new concepts is hardly "reflexive"
oriented reasoning turns out to be unimportant? It is at least reasoning. It requires time, repetition, attention, reflection,
conceivable that an alternative paradigm such as case-based and so on. Thus, it seems reasonable to assume that such hard
reasoning (Riesbeck & Schank 1989) may be more useful, with structural learning may require special-purpose neural
dynamic variable binding possibly irrelevant. Another possi- machinery.
bility is that although some rule-oriented reasoning may be To summarize, it is tempting to suppose that Shastri &
necessary, a fidl-fledged treatment of n-ary predicates is unnec- Ajjanagaddce have developed the "last word" on variable hind-
essarv and cotmnterprodductive, therefore, much more oestrict'd ing, and that this irksome challenge can at last be put to rest. But
mechanisms may be sufficient. the possibility of simpler, faster, and more parallel methods has

Constraints and feasibility. So-called static binding may stuf- Hot yet been ruled out. The overall point here is hardly irrelc-
fice to explain most reflexive reaoning. (lespite appearanecs to vant. That is, if we ignore the eri( s 'of variahlh-us'rs to explain
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how to replicate their results and we try hard to construct to spread more permissively (dubbed Dr. Spock), settling times
systems that solve hard Al problems while avoiding the obvious were more reasonable due to leakage of consistency information
exploitation of arbitrary high-order combinations and frequent through the network. The use of graded evidence in the current
binding of novel values to variables, we may end up with some system to pick the best solution could alleviate this potential
very interesting results indeed, problem.

Finally, one wonders whether the benefits of being able to
express propositions about types (sect. 5) is worth the cost of
adding another system (the IS-A hierarchy) when inheritance
can be expressed as repeated applications of logical inference

From symbols to neurons: Are we there yet? (Hayes 1977).
Neurosclentlfic plausibility. From the point of view of model-

Garrison W. Cottrell ing the brain, this architecture requires a suspension of disbelief
Computer Science & Engineeing Department 0114, University of about how such a system could have been produced by evolu-
Ceiitnia, San Diego, La Jolla, CA 92093 tion. This criticism is weak because it is founded on an argument
Elehrolc malil: gary(@vus.ucsd.edu from lack of imagination. However, in order for this system to
Shastri & Ajjanagadde's (S&A's) target article proposes two main work properly, highly specific connections must be formed from
ideas, the direct embodiment of a subset of formal logic as the nodes representing the concepts to the connections be-
structured associations between predicates, and the solution to tween antecedents and consequents. Things get more compli-
the binding problem through phase labeling of entities. This is a cated when one wants to introduce constants as in Figure 14, or
truly novel solution to the binding problem: The phase-labeling multiple arguments as in Figure 15. Learning in such structured
approach avoids the trap of combinatorial space requirements networks uses a recruitment rule (Valiant 1988), where preexist-
implied by systems that "connect" the two entities through a ing connections between the appropriate units gain force. In
path in a network. When I first saw this work, for a fleeting S&A's case, there must be preexisting connections from every
moment, I wanted to become a localist again, potential concept to connections from every potential predicate

Having caught myself at the brink, my critique will focus on to fact nodes, which leads to another combinatorial explosion.
the logical inference side of the system. The notion of embodied The pattern-contalnhe' Inference alternative. The possibility of
inference is not novel (Cottrell 1985; 1989; Hebb 1949; James a system of pattern-containing inference (sect. 9.4) is a useful
1890; Lange & Dyer 1989; Shastri 1988b; Touretzky & Hinton one to pursue. This is the idea that a system of embodied
1988), but the current system claims to achieve better efficiency inferences like the one proposed in the target article could be
and coverage. I will consider three aspects: technical adequacy, constructed that passes distributed patterns of activation from
neurological plausibility, and finally, the pattern-containment antecedent to consequent in slots for the arguments. It is clear
alternative, that pattern-containing inference could also use the phase-

Technical adequacy. It is unclear from the target article labeling mechanism to maintain multiple separate bindings for
whether the quite complicated specific wirings used by this the same pattern.
model correctly implement the inferences S&A say they do. For There are interesting advantages to using pattern-containing
a formal system, one usually wants to prove soundness (that only embodied inference rules: (1) It should be possible to learn rules
inferences that are entailed by the facts can be derived).I using back propagation or some similar technique between
Correspondence with the first author has allayed several of my antecedents and consequents; (2) semantic filters would be
fears, but the burden is on the authors to prove that this complex embodied in the associations: The copy of predicate arguments
system does not make incorrect inferences. The matter cannot from antecedent to consequent is essentially through an autoen-
be decided by inspection, coder network (e.g., as in Hanson & Kegl 1987), thus only

A second worry is the lack of expressiveness. It appears that patterns similar to the ones that have appeared in exemplars
negation cannot be represented, as it has not even been men- would be allowed through. Semantic restrictions on arguments
tioned in the text. To address this, for every predicate P, one can would therefore be handled completely locally, based on experi-
simply add another node (or, in this case, a set of nodes) to ence with this inference, rather than on constraints that must be
represent the predicate -P. Inferences involving -P are then enforced by connections from the IS-A system, as S&A propose.
driven by activation from this node. A consistency gadget This is inherently more efficient. Also, covariance constraints
between P and -P can be constructed to enforce that they do not between arguments would naturally be enforced.
both fire when the network has settled. This is the solution used Whether or not one rejects Shastri & Ajjanagadde's system for
in the Spock system (Cottrell 1985; 1989), which implements the above reasons, it is an undeniable achievement of this work
Reiter's Default Logic for inheritance (Etherington & Reiter that it has brought to light a bold new idea for solving the
1983). In S&ANs system, the consistency gadget will also have to binding problem with processes available in the brain. The
enforce that the bindings of the two representations of the notion of phase labelingofentities is a powerful one, and here for
predicate are the same when enforcing consistency (Spock is the first time we have a demonstration of its viable use.
propositional).

S&A's claim that they call add defaults (sect. 5.5) and combine NOTE

the forward and backward systems (sect. 3.5) merits further 1. Comphleteess (that all somid inferences tall he derived) is tot at

inspection. Care must be taken that added expressiveness not issue here.

detract from the efficiency oft he system. In the Spock system, I
found a classic example of the expressiveness/tractability trade-
off (Levesque & Brachnian 1J985). When the ability to compute
the contrapositive is included in the representation (adding P-- Making a middling mousetrap
Q implies -, --- P is encoded also) there exist Sets of filets
where mixtures of delaults and first-order rules callse( long Michael R. W. Dawson and Istvan Berkeley
settling timies for the nretwork even when there is only one Biological Computation Project, Department of Philosophy. University of
consiste't ('xteilsion. This was due' to thlle backward svst('Oi Alberta, Edmorton. Alberta. Canada T6G 2E9

ilf'rriol - I"'s (I•c go Inl a shiort default itnfirein'e) whilte .th Electronic malt: mike(, psych.ualberta.ca
ti1warul s-sti-m was iliibrriitg I's throhigi the. same long 'hain l'•ir•i'-soi o1n(c noted di t "if: Ita Iall ... mako i' betllter •oulse-
iottil lhe' otlhe(r e.ncd. Mai' itt'rations were i•ie.ssarmv to resolkc trap than lo, tt1h1Ilh. thtotlidlie build his hotis, in the woods

tdt'. cotilc.t. IlIow ,\i .r. i it \csio" i chi .tiii\;tiolt wasallo\w ,del the" \ ld %\Ji) i11.ik,, a bea te t ttli iit his d(oot.' shitt
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Commentary/Shastri & Ajhanagadde: Association to reasoning

Ajjanagadde (S&A) must clearly be expecting a lot of company at process. Although these two limitations are acknowledged in the
their house in the woods, for they not only believe that they have target article (sect. 8.2.5), S&A fail to note the full extent of the
built a better mousetrap - an effective and systematic reasoner - problems they produce (e.g., with respect to reflexivity).
they also believe that this mousetrap is of a different kind - a These are not the only logical difficulties from which the
rule instantiating, biologically plausible connectionist device. A system suffers. For example, the proposed IS-A hierarchy
closer scrutiny of their model reveals, however, that not only is it cannot handle facts or queries in which existential quantifiers
the same type of mousetrap that classical Al has been springing fall within the scope of universal quantifiers. More significant,
for decades, but that it is also not quite as good. the network has considerable difficulties in handling multiple

Three different weaknesses suggest that the proposed model instantiations of the same predicate (it also has some lesser
is classical in nature. First, the target article argues that the difficulties with multiple instantiations of the same concept).
reflexive reasoner does not require a central controller, in To provide a convincing solution to the latter problems, a
contrast to classical systems. This cannot be true. The system considerable number of additional nodes would be required.
can only he understood as providing a yes/no answer to ques- Unfortunately, this would slow the system's performance signifi-
tions like, "Can Mary sell Book l?" by having an external control- cantly. As a result, S&A compromise and limit the number of
ler that understands (and remembers) the original question, and multiple instantiations of predicates to just three. However,
also knows that a response will be encoded as activity in c:can- they do not offer any evidence that this limit is either biolog-
sell. The system cannot autonomously make sense of the bloom- ically or psychologically plausible. As this limit is critical for
ing, buzzing confusion of its own activity. For instance, Figure calculating the latency of network operations, their claims about
13 illustrates that at one point in time the nodes c:can-sell, the biological plausibility of the system's speed must be treated
c:own, and c:give (representing different possible answers), and with a degree of suspicion.
the nodes e:can-sell, e:own, and e:buy (representing different This difficulty, considered in conjunction with the other
possible questions) are all simultaneously active. As a result, the logical limitations of their network, gives grounds for believing
network cannot "know" what answer it is giving, nor the original that the proposed model is in fact less powerful than traditional
question that was posed, without external interpretation, systems. For example, none of the logical limitations mentioned

Second, the target article argues that the reflexive reasoner is above affect the classical backward-reasoning system described
not a classical system because it is rule instantiating. This by Pelletier (1982). In short, Shastri & Ajjanagadde have not
amounts to a standard connectionist claim that network archi- built a better mousetrap - perhaps they should get a cat!
tectures do not clearly demarcate processes from data structures
(Dawson & Schopflocher 1992). This claim is clearly not true of ACKNOWLEDGMENT
the proposed model: The rules governing system inferences are This work was supported in part by NSERC operating grant 2038.

qualitatively different and are represented separately from the
data structures being processed, as S&A conveniently illustrate
with the "squiggly line" in Figure 19.

Third, it is claimed that the reflexive reasoner - unlike Reasoning, learning and neuropsychological
classical systems - is biologically plausible. This too is far from
established. Although it is quite interesting that temporal syn- plausibility
chrony has been observed in the cortex, many more specific
claims are not defended in the target article. Several different Joachim Diederich
and highly specific neural circuits are proposed (e.g., Figures Neurocomputing Research Centre, School of Computing Science,
14, 21, 23, 25). In addition, a number of qualitatively different Queensland University of Technology, Brisbane 0 4001, Australia

processing units - including three different kinds of tau-or units Electronic mail: joachimafitrnail.flt.qut.edu.au

- are required. A great deal of further evidence from neuro- Shastri & Ajjanagadde's (S&A's) approach is remarkable in many
science is needed to support such claims, ways. They offer efficient reasoning in a connectionist knowi-

Biological plausibility is further weakened in the context of edge representation system. This representation system has an
speculations about how the network might learn facts or rules. If expressiveness that facilitates the realization of a number of
the learning of facts requires the presence of an external "learn" knowledge structures (frames, scripts, etc.). Furthermore, they
signal, then this strongly indicates that the network is not present a model that makes a number of predictions about
autonomous and thus is far from being neurally plausible. In psychological processes and therefore allows experimental veri-
addition, although it may be true that the learning of rules in the fication (or falsification). But most important, S&A attempt to
reflexive reasoner is no more difficult than learning in nontem- close the gap between high-level reasoning and neural process-
poral connectionist systems, it is certainly biologically implausi- ing and show how "reflexive" inferences can be drawn efficiently
ble - particularly if backpropagation is used (see Grossberg with slow neural elements.
1987). It is natural that a model that covers a wide range of phenom-

The three arguments above suggest that the proposed model ena cannot be equally specific and appropriate in every detail. A
is not a mousetrap of a different kind. But is it a better mouse- few points that deserve attention should be mentioned.
t:ap? Although S&A have showin that a number of the functions Learning. S&A do not provide an answer to the question of
found in traditional reasoning systems can be implemented by learning. Although this seems to be a research strategy that is
their novel parallel architecture, their network suffers from generally accepted in the Al community, the lack of learning is a
some severe logical limitations. Regrettably, these serve both to problemn for S&A (sections 10.5 & 10.6 speak about learning in
compromise its inferential power and to cast further doubt upon very vague and general terms). In their model, reasoning is
its putative biological plausibility, based on complex, do|ntain-del)endent nctworks and it is an

The proposed model has two significant diffic'ulties in dealing important question how these network structures are ge('lr-
with variables that oeiur in multiple argument positions. First, ated. In particular, if S&A 'xtntnd their claim of neural plau-
in backward'< reasoninig it ('annott use rolhs in which a variable' sihility to learning, they should answer th' question of how
,x'curs in multiple argumennt positions in a rule's antecedent comlphcx network stru('ttires ('an be generatcd based omn biolog-
whe n the variable does nitt also appear in the rule's conseq'teut. ically plausible, namely sparsely counected, neural networks
Sec nd. io tmrward (or prre(licti\t' reasoning, rules in which (I)iederilh 1992ý Stevens 1.989). ii'therimort.. although iii th<ir
variahl's occur' in Inihltipl' arnlllen( positions in thllt co)tse- intodel limited reasoning can be donit tllicitotly. the ge'nmration
(ple'nt ammtlol he nst't] toml.ss thos. sariahil's anr also pr('se.t' in of the ne'tworks that allow tlh.s,, rt'asttimtt prtct'sst's calt be'
11' .l mt 'ct(ldclt of tilt fill' tl • rt ' hotoi, l in thl r. it';l in. tot |plh'\ or ',\ctn hard.
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Comrnentary/Shastri & Ajjanagadde: Association to reasoning

Recent neurobiological findings have shown that there are Connectionism and syntactic binding
considerable changes in the receptive field organization of of concepts
cortical cells in adult cats and primates (df Merzenich et al.
1988). These changes are triggered by the absence of input Georg Dorffner
(Gilbert & Wiesel 1992; Merzenich et al. 1988) or experience p tn ot Meckca Cybernetics and Artifcial Intefigw•"e, Univeity of
(e.g., tactile stimulation, Mermenich et al. 1988). These pro- Vienna, A-1010 Vienna, Austria
cesses are relatively fast. The modification of the receptive field erc mail: goorg(wai.umie.ac.at
organization of cells can be noticed within a few minutes. Shastri & Ajjanagadde (S&A) have done a remarkable job in
Gilbert and Wiesel (1992, p. 152) assume that dynamic changes modeling certain aspects of reflexive reasoning. However, some
in receptive field structure may occur continuously during evaluation of their representations, as well as their solution to
normal vision. the binding problem, seems appropriate to put S&A's model in

On the connectionist level, these processes are modeled by the b ing reseems appropi e tonputsmp~erspective with respect to its being "connectionist."
"recruitment learning" methods. Adding learning techniques The motivation for S&A's introducing the idea of synchronous
such as recruitment learning to S&A's model can help to replace firings of nodes was the so-called binding problem. Even though
some artificial components of the system, for example, the this problem was pointed out early (see their references in sect.
switching devices and the allocation of free memory banks 2.1.1), it has really been brought into the foreground in the lightfor multiple instances, with biologically plausible, structure- of critiques ofconnectionist representations in neural networks
changing learning methods. (Fodor & Pylyshyn 1988b). According to these critiques, con-

Grounding. Over the past several years several authors (e.g., nectionist patterns of activation are merely sets of numbers
Pfeifer & Verschure 1992) have pointed out that we cannot lacking any structure. They therefore cannot naturally repre-
understand a cognitive system without a connection to sensory sent complex conceptual relations where different concepts
experience. That is, mental states (instantiated predicates in have to be bound to their roles. In classical Al, due to the
S&As system) develop out of real interactions with the physical prevalent use of syntactic symbol structures, this was a non-
world. The important point is that it is not sufficient to link a issue. There, binding can easily be defined by assigning roles to
high-level reasoning system with a sensory system in order to syntactic position. S&Ks response to the binding problem in
realize such a connection, but that the conceptual representa- connectionist networks is as remarkable as it is powerful, but it is
tion itself is the result of interactions with the environment and also a very "classical" one. Defining binding through syn-
includes sensory pathways that are at least partially modified by chronous firings of nodes is identical to the syntactic solution in
experience. A connectionist reasoning system without any traditional Ai systems. The remarkable thing about it is that the
learning does not allow concept formation in this sense and is representation is moved into the temporal dimension. An exam-
therefore restricted as a psychological model, pie: Having p-seller and Mary, as well as cs-obj and Book1 fire

Neural plausibility. Although some aspects of the model are syncHrono reseie ly (ex l fo sect. a.d i the
biologically plausible (synchronous activity, fast response times, synchronously, respectively (example from sect. 3.1), is the
etc.), some components are purely functional elements. The same as representing this relation by using pairs of symbols in

"1. aparentheses, meaning that the concepts in each pair are bound,"enabler" and "collector" units as aned ade o med"iatel-or" for example ((p-seller Mary)(cs-obj Book))).units are used to allow reasoning and are not immediately The difference is that here only the spatial dimension is usedplausible neural elements. The same holds for the connectivity for concatenating symbols, something that is obviously not
pattern for long-term knowledge base (LTKB) facts. As a matter possiblc in common neural networks (as units in a network
of fact, the unit types and network structures are excluded from cannot be repositioned). Now ((p-seller Mary)(cs-obj Book1))
the discussion of biological plausibility (section 7 speaks about does not seem to be the usual way of defining relations in the"synchronous, rhythmic activity" only). It is possible to find symol appro as te al f is uedsuhns cn-
neurobiological evidence for "relay units," and so on (cf. Singer symbolic approach, as often a simpler form is used, such as can-
neurobiologica l tevidene forhrelaym unbiologitscan pso t (cfanger sell(Mary, Book]). The binding in the latter representation is
1987), and therefore the claim of biological plausibility can be defined by implicitly assigning the two roles p-seller and cs-obj
extended. Network elements such as unit types and connection to the first and second position in the predicate, respectively.
patterns must be part of the discussion of neurobiological This may be possible in S&A's approach as well (such as defining
plausibility. that the first concept firing is the p-seller, and the second one

S&A refer to neurobiological findings that the temporal syn- the cs-obj), but it would make many things (such as mapping
chronous activity of cells in the cat's visual cortex supports the corresponding roles in different predicates) more difficult. In
dynamic binding of visual features of objects. In other words, conclusion, we can say that S&A's solution to the binding
the temporal synchrony of neural firings supports pattern recog- problem is the syntactic solution of expressing concept rela-
nition and vision. What about explicit, reflexive reasoning? It is
not at all obvious that the neurophysiological evidence for the tions, exploiting the temporal dimension in a clever and, as itdynaic indig o viual eatrescarres verto mltitep tunis out, even in a neurally plausible way.
dynamic binding of visual features carries over to mu.tistep Recent literature, however, has suggested that the syntacticConclusion. Biological plausibility, efficient reasoning, and solution need not be the only one (e.g., van Gelder 1990): it justtheablusity .t iologmake cal n lausiberf edicienthat reallowipsyc- happened to be the obvious one for symbolic models. Connec-the ability to make a number of predictions that allow psycho- tionist models - if taken in a much more general sense than inlogical testing are the outstanding features of Shastri & Aj- S&A's work - have the power to represent conceptual structures
janagadde's system. The absence of learning is disappointing in a nonsyntactie, that is, superpositional way (Chalmers 1990;
and it is an important question how complex network structures Pollack 199; Sharkey 1992). The problem with the literature on
can be generated efficiently with biologically plausible, nec- this topic is that most such approaches are tested on problems
tionist methods. Apparently, there is work on the way on this t that toe syc so ach ieves(ed g.. the
learning and an application .of the system to natural lanig uage equivalent to what the syntactic solution can achieve (e.g., the
learnesing. ad icafutire wonkwishw of the syst em tontrallanguage transformation of parse trees, as in Chalmers 1990). Thus I will
processing. This future work will show if some of the rmdainiog briefly report results from our own work, which d(emnonstrat'
problems can he solved, that the sUlperpositional way of representing compositional

structure can lead to a much bigger step toward neurally and
AC K N OW , E 1) G \1 E N T psychologically plausible umodels of reflexive reasoninZ.
Iain gramih,fIto (;erhard Brewka. Iicliard Coss. (Georg IN)ortlzer. steffenu The key to such a fiirt her step is wvhat we call "soft comnpolsi-
II lldobhir. andI Fraz, Kmiirtess •or their cominment s on earlier drafts of tionality.(' Connectionist literature on concpt formation and
this commei'tars, (listriblot'd repres(entations has shown that uural umt'twirk, van
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ComrnmentarylShastri & Ajjanagadde: Association to reasoning

implement "soft" concepts (Hinton 1986; Smolensky 1988) and Dynamic bindings by real neurons:
rules (MeMillan et al. 1991). Both can be viewed as fuzzy and Arguments from physiology, neural network
analog entities which only in certain situations become discrete
(e.g., in the process of unambiguous recognition of objects).
S&A's model, on the level of single concepts and rules, could be
viewed as a post-hoe approximation of such concept structures, Reinhard Eckhom
explaining the situations where their discreteness counts. We Oepartent of Biophysics, PWops-Univoersd. D-3550 Marbog, Gfmfany
want to argue that this cannot easily be said about bindings of Elecronic maNh ckhorn(apc1306.phys•n.ui-twbui..de
concepts to their roles, as there should be a continuum between Does the S&A mode/use biding michanismsinm/ar to ihof
composite structures consisting of several concepts and their the brain? It is not clear from our experiences with the visual
roles, on one hand, and holistic unstructured concepts, on the cortex whether the model of Shastri & Ajjanagadde (S&A) will
other. still finction as required if neural network dynamics are in-

Consider the following example of objects and their spatial eluded that are similar to those of cortical neurons. This is called
relations to each other. Suppose 1 enter a room that contains, into question when we compare the rhythmic activities of the
among other objects, a table with a chair on top. It is clear that I model and that of a real cortex. The most striking differences are
could represent this by a structure like on-top(chair, table) or the completely different dynamics (Eckhorn et al. 1988; 1990).
((chair upper)(table lower)). But when I have to reason reflex- Although the S&A model uses a simple phase-delay scheme for
ively, it will depend on the situation whether it really matters labeling and binding different entities and although it is driven
that there are two objects in a relation to each other. If I want to by a rhythmic input, synchronized oscillations in the cortex are
screw in a light bull), I might deal with the whole thing as one probably due to a self-organizing process among mutually
concept (such as ladder). If my goal is not to bump into anything, coupled neurons; systematic, stimulus-specific phase delays of

it might be no concept at all, only a "fuzzy blob" causing some simultaneously occurring oscillatory events have not been oh-

motor reaction. The hypothesis now is that in reflexive reason- served to date. The relatively stable phase delays that have

ing (exactly the kind S&A want to model) there can be a frequently been observed in about 10% of our recordings,
continuum between complex structures and holistic concepts in however, did not occur in a stimulus-specific way, as would be
the representations used for reasoning. In other words, some- required for bindings of entities in the S&A model. We can
thing might be represented best as a complex structure, as one explain them as phase differences between signals from excita-
whole, or as anything "in between." The important situations tory and inhibitory neurons that are locally coupled and in-
are the latter ones. I might have screwed in the light bulb and volved in the generation of oscillations in the respective local
gone out of the room inclined to say that I dealt with one object assembly. In addition, oscillatory events (spindles) in the cortex
in there. The question "Isn't there anything I can sit on?" are highly variable in their frequencies, amplitudes, durations,
however, can push my vague compositional representation of and delays in contrast to the signals in the S&A model.
the two objects above threshold to permit the answer "yes, I The impressions from our observations of synchronization
guess I saw a chair on top of something else" (perhaps adding, processes in the visual cortex and from our related neural
"or was it underneath?"). In syntactic models such as S&A's, network models suggest the following signal dynamics suitable
complex predicates are always complex predicates, and roles are for transient bindings of representations: The cortex may be able
always distinct. S&A do hint about a "soft" variant of rules (sect. to represent a large number of entities nearly simultaneously by
5.5), but "soft" compositionality in our sense would go beyond forming synchronized oscillations of short durations and varl-

that, in that the existence of roles itself can be fuzzy and analog, able frequencies in many different assemhlies. Such oscillatory

Dorffner and Rotter (1992) present a little model that, in a first even rcqsttiesticaly dindepent a ineisigalchouseslas

step, partially achieves "soft" compositionality. It is based on the long as the entties they represent do not beilog together.

so-called binding vector (BV, Rotter & Dorffner 1990), which However, oscillatory active asscmblies that are coupled hy

achieves superpositional representations similar to nRt~t (Pol- Hwvr siltr cieasmle htaeculdb
lackhi9W),butrowithonut rpriorlearning.s simartg with satiaMPl- (mutual) connections can transiently form common oscillatory
lack 1990), but without prior learning. By starting with spatial states of zero-phase difference by mutual synchronization and
relations and sensory input it also accounts for learning and they may define by this process the transient binding between
grounding (another aspect where S&A have disappointingly different entities. Such types of binding do not require distinct
little to say). The most interesting aspect with respect to S&A's phases for disitnct entities. Instead, entities may be defined by

work is that binding in the BV is also achieved by synchronous the internal coherence of the signals in a subassembly, and

activation of concept and role. The difference is that after this, binding hetween subassemblies nay be defined by the degree

activations are sustained and superimposed onto each other and of transient signal correlation between signals of different

thus do not need to stay distinct. strasies.

In final conclusion, I want to argue that S&A's model of In addstion to rhythmic synchronization, nonrhythmecsynchro-
reflexive reasoning falls short of what other types of connection- nization might support syhnamic binding. The binding proess
ist models could he capable of achieving. To be honest, research described above does not rely on rhythmic signals. Instead,
in self-organizing, distributed networks is still in its infancy and nonrhythmic signals might introduce.even higher degrees of
cannot directly compete with systems as complex as the ones freedom and thereby alsow binding u etween more distinct
S&A propose. Most of what has been said here must therefore entities (in the sense of the S&A model). This means that
remain a claim people working on those models will have to live dentitic bindings might be achieved more generally by tran-
up to. If they will, we could say that S&A's model, although sient correlations between signals of any type, including oscilla-powerful in many respects, is still much more symbolic than it is tions as a reasonasle case. In particular, irregular signals seem toconnectionist, be highly appropriate for the labeling of related entities, as has

AC K NOWL E D (;M E NTS been showun inl models of visual sc'ene segmentation (Pabst ct al.
I thank Erich Prem amId Joaciimii I)iederidh fu)r thleir omimints ol this 1989). Participation of nonoscillatory signals in dynamic bind-
text. ings is further supported by our observation that in the visual

cortex oscillation spiidles can be partially or (ompl'tely Sup-
prcssed by transient stimiuI that drive ecortical neurons of similar
types syllchronotisly in a stimuiis-lokckd manner (Kruse et all.
1992). For these cast's we have proipiNlcd that stimiuls-I cked
sk n.hrotii/titiott sirms-s fir tIlt' transittit binding Eck Ion) vt Al.
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1990). This view is supported by everyday experience. Strong Toward a unified behavioral
transient visual stimuli can be perceived rapidly, even in com- and brain science
plex visual scenes, much faster than the cortex would require to
generate several periods of a 40 or 50 Hlz oscillation. Jerome A. Feldman

Neurons can process and transmit sufficient rates of informa- Interational Computer SCAM& Institute, 1947 Center St.. Ber*eey, CA
tion fo the representatlon and routing of complex dynamic 94704
bindlins. It is stated in S&A's introduction that neurons are slow Electronic mail: floelmanl(asi.berkelay.edu
computing devices and that they comnmunicate relatively simple It is still commonplace to identify connectionist (or neural
messages that can encode only a few bits of information (2 bits in network) models with initially unstructured systems that are
15 msec). This led S&A to the conclusion that a neuron's output adapted through supervised or unsupervised learning. Shatri
cannot encode names, pointers, or complex structures that & Ajjanagaddt's (S&A's) target article indicates how much richer
would be necessary, for example, to form dynamic representa-tions and to propagate (route) then into specific directions. the paradigm can he. What I find most remarkable is theHowever, S&A may have underestimated the amount of trans- progress that has been achieved in the first decade of the newwave of connectionist research. The central technical issue inmitted information because they used a frequency code. Being this paper, connectionist variable binding, was viewed as intrac-
aware of this, they added the argument that even if interspike table only a few years ago but now has a variety of c
delays are included in neural coding, the time available for a solutions a o utlinedhby a&AaAndtthesecompeting
neuron to respond to its inputs is very limited, and so is the solutions as outlined by S&A. And these solutions are no mere

amount of transmitted informnation, because a presynaptic neu- implementation of formal logic - the representations preserve

ron can only communicate one or two spikes to a postsynaptic many of the key computational advantages of connectionist

neuron before the latter must produce an output (see note 4) models: parallelism, context-sensitivity, robustness, and evi-neurn bfor th latermus prouoean utpt (ee ote4). dential combination. A learning story needs to be added, but

These arguments do not convince us. First, a single cortical t i s pr o n. h ere anso.

neuron generally has thousands of synapses at which one or two there is progress here also.
spikesThe most important thing about the target article is not the

plex time course of the postsynaptic potential with generally extent to which it is right or wrong, lit the fact that we can now
high information density. Second, signal processing in cortical evaluate detailed models of complex phenomecna that can lay
highons inormtinadensiy Se gnalpon in ortice claim to behavioral, biological, and computational adequacy-
neurons is not terminated by the generation ofan output spike, Not long ago this would have been impossible. It is obviously not

because spikes generally do not "reset" the membrane poten- eas to attack
easy to attack a hard problem (here, reflexive reasoning) from

tial, as can be seen directly in intracellular recordings from theavarious perspectives simultaneously, but we noning have the
cortical neurons (e.g., Douglas et al. 1991). In addition, it has t o us forse ctres sintateousl s no the
been shown rigorously that information rates in sensory and tools for expressing such integrated models and this is beginning
motor systems of mammals reach values of 300 bits/see on a to have a profound effect on the unified behavioral and brain
single nerve fiber if codes are chosen that match the signal sciences.

transfer properties of the respective neurons (Eckhorn et al.
1976). This is equivalent to average information rates of 4.5 bits
in 15 rnsec. However, if one calculates the actual time courses of
information, rates of 6 bits in 15 msec often occur (Eckhorn &
Poepel 1975). Such high rates in single neurons are assumed to Deconstruction of neural data yields
be sufficient for the signaling of complex messages, including biologically implausible periodic oscillations
the routing of dynamic representations.

Much higher rates of information would be available at the Walter J. Freeman
"nodes" of the S&A model if the functional units of the nodes Department of Molecular & Cell Biology, University of California at
were realized by local groups of similar neurons. Such local Berkeley, Berkeley, CA 94720
ensembles might use probability coding on parallel output Electronic mail: wfreeman(agamet.berkeley.edu
fibers, namely, the probability of discharge of any of these Shastri & Ajjanagadde (S&A) provide a fine example of circular
neurons would be the (quasi analog) signal that transmits the reasoning in their description of the "biological plausibility" of
information of the ensemble. Information capacities in such their model, in that the results to which they appeal constitute
systems using group codes can reach much higher values than an Al-based interpretation of neurophysiological recordings
those on single fibers because noise is reduced with increasing rather than raw measurements of activity in the visual cortex of
size of the group. If. for example, intrinsic neural noise is animals.
statistically independent (in the idealized case), then groups of The "feature detector" interpretation deriving from the ex-
N = 100 neurons can transmit information rates that are higher periniental work of Mounteastle (1957), Lettvin et al. (1959).
by a factor of 10 than those ofasingle neuron (proportional to the Hubel and Wiesel (1962), and many others holds that when a
square root of N). complex sensory stimulus arrives in the sensory cortex, a small

Although S&A's arguments for labeling and routing of coin- subset of neurons is vigorously excited and inhibited. Von der
plex representations by simply synchronizing the appropriate Malsburg and Schneider (1986) were the first to investigate".nodes" are convincing for moe. I would like to stress the point systematically some of the an:' uiitics that arise when diverse
that at least in principle, other mechanisms might be used, stimuli can generate the sai:,, static neural response; they
because neurons have the capacity of signaling high rates of' proposed a mechanism of p)hase-locked periodic oscillations to
information during short intervals. In the S&A model the resolve them. The findings of Engel et al. (19)) and Eckhorn et
propagation time for a synchronized state to the next node al. (1988) appear to bear out his proposed solution, so that S&A
re(Inir'es about 20 insec,. which is the cycle time observed in feel justified in pointing to the similarity between putative visuial
stimuhis-induced oscillations (Eckhorn et l l. 1988. (Gray & cortical finiction and their mnodel based on periodic orbits and
Singer 1989). 1])ri-ng 20 msm.cS hbits can already Ie t tmasinitted phase-locked pulses at sote common het elucc in their net.
byI a single real neuron, which is entough for signaling abonit 5W0 It is in the aspect of periodicity that their modcl Ihlls short ol
alte.rnativc states (ea'ch asailabl' for tile, .ommuitinication of the biolog'ical datai the itilt., hlwvner, lit's not wilh S&.-A bit
iallis or poilittrs , with the intrl'pletation b\ tihe biologists. If cor'ticalt neitnIlt'

\vcrc roitti elv solls'rv'(ld to firc' p'riodi lt'll l at t dt'sillith'd
lctw•r'k li'cqm it'ycv tlhie tli., son d(,i \1al lubtt iiit'lrII,'titjt WIi
\kthll hIT. iImIplk justi I'f tiWiT. ttll\ Iirnlit nv, olilto ,s c indfcd
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found on occasion, particularly in the cat, which for unknown the data, the instantaneous frequency can and does vary pseu-
reasons, has a peculiar tendency to narrow band oscillations in dorandomly over the short term. Simulations suggest that chao-
all of its sensory cortices; but these neurons form a small tail in a tic dynamics may be unusually powerful at solving pattern
distribution of firing rates and patterns and the great majority of recognition tasks (Yao et al. 1991).
neurons yield pulse interval histograms that conform more to Biological memory systems are well known for their vagaries
the Poisson than to the periodic distribution. Also the time- (Bartlett 1934), and a case has been made that the essential
lagged covariances between the pulse trains of pairs of neurons neural dynamics underlying the construction (not reconstruc-
tend to be vanishingly small (Abeles 1991), which would not be tion) of images during acts of remembering is chaotic (Freeman
so if the neurons usually shared a firing frequency, whether or 1991; Skarda & Freeman 1987). S&A note properly that they are
not they were in phase. not intending to elaborate a model for brain function so their

A further problem is that the mean firing rates of most cortical appeal to "biological plausibility" seems inappropriate. Their
neurons are considerably less than the prevailing peak frequen- model for a commonsense knowledge base may be fruitful in
cies of cortical dendritic potentials (local field potentials or managing retrieval of information from large libraries, but only if
electroencephalograms [EEGs]) in the gammna band (including the "knowledge" has already been once removed from the real
the 40 Hz). This fact is obscured by such techniques as multiple world, just as the purported "limit cycle" behaviors of nerve cells
unit extracellular recording, which is a form of spatial ensemble have already been decon tu rcted from the actual performance of
averaging over a local cortical domain; correlation analysis of neurons in living brains.
spike trains, which is a form of time ensemble averaging that
enhances the appearance of narrow band oscillation by expres-
sing the time-variance of a frequency as the decaying envelope
of the correlation oscillation at the center frequency; and spike-
triggered averaging of EEGs, which invokes the spatial ensem- Must we solve the binding problem
ble averaging that is inherent in dendritic extracellular field
potentials (Freeman 1975; 1991) and the time ensemble aver- in neural hardware?
aging that enhances the center frequency of a distribution of James W. Garsan
frequencies. Again, the cat (from which the bulk of new results
in this development have been taken) yields particularly simple Departmrient of Pbilosophy, Universy of Houston, Houston TX 77204-3785

wave forms, but unaveraged records from the lagomorph and Electronic mall: philO•jetson.uh.edu

simian visual cortices reveal broad spectrum EEG activity Shastri & Ajjanagadde's (S&A's) idea of representing variable
relating to goal-directed behavior on single trials (Freeman & binding with signal synchrony and implementing deduction by
van Dijk 1987), which is oscillatory, to be sure, hut strongly entrainment of signals is attractive. However, S&A postulate a
aperiodic, very specialized and rigid neural architecture to accomplish

In brief, pulse trains and EEC waves are mostly aperiodic. It these tasks. S&A's model verifies that a net can implement fast
is the requirement of Al-based modeling that leads to manipula- (but limited) reasoning 1b exploiting signal synchrony. That does
tion of the data for the extraction ofcenter frequencies and to the riot tell us much about the brain, however. It would be a miracle
suggestion that there is rapid convergence of visual cortical if the brain contained networks involving collectors, enablers,
dynamics to limit cycle attractors. Now definitions of "phase rho-btu nodes, tau-nodes, concept clusters, and switches ex-
locking" and "phase coherence" (as distinct from spatial coher- aetly as S&A describe. Our understanding of the task to be
ence of broad spectrum activity) can only he based on the modeled and the machinery available comes nowhere near to
existence of discrete frequencies. The characteristically sloppy constraining the solution this tightly.
wave forms seen in raw data indicate that the cortex is rather S&A's project belongs to a paradigm in connectionist research
indifferent to precise control of the frequencies of its pulse trains that attempts literal implementation of machinery (such as
and dendritic current amplitudes, and that it allows them to vary binding) drawn from classical Al. There is an alternative connec-
continually seemingly at random. But the phase of a continuous tionist paradigm that takes the project of understanding binding
frequency distribution cannot be defined for these events, much less literally (Elman 1991; Servan-Schreiber et al. 1989).

Even with the techniques of data refinement noted above, It postulates a very simple recurrent net architecture and
which suggest that narrow band oscillations are capable of successfully trains nets (with modified backpropagation) on tasks
coming into synchrony in time periods as short as one cycle (20 that are traditionally thought to involve variable binding. In this
to 40 msec), there is a reported spread of coupling of ± 270 to ± empirically minded paradigm, no attempt is made to define
54* at 25 to 50 Hz and a 95% confidence range of 1080 to 2 1 6 '. If ahead of time the subtasks or their manner of implementation.
these confidence intervals hold in the presented model, the That is to be discovered by the net. not stipulated. Here
short time segments of 0. 1 see for the perceptual frames that are solutions to the "binding problem" emerge from weight selec-
invoked by S&A will not yield adequate reliability for readout by tion in a general purpose architecture that uses distributed
detectors of phase lockings from a transmitting array. S&A note rather than local representations. This line of research has not
some of the further unresolved difficulties regarding the man- tackled reasoning directly, but it shows at least that some
agement of multiple-phase modes and the compounding of the implicit binding can be handled without special architecture.
difficulties when "soft" rules are brought into play, by which The strongpoint ofS&A's prol•)osal is todisplay the advantages
"continuous gradations of the degrees of synchroni?•ation are of exploiting time in connectionist representation. However.
used. Ilence S&A's model is biologically implausible, the same strategy is also exploited by nets trained in the

The hypothesis underlying S&A's formulation of the "binding empirical paradigm. here syntactic structure is rep)resented b,
problem" is that the visual cortex operates by extracting strong the systemn's trajectory through phase space (yams (;elder 1991).
correlations anmonig a small subset( of very active' neorons in any Tlask classicist s charactt'rize as involving binding arc acconi-
given timet' segnient. Aim altermnative ]sylpothesis is that tl(t' cortex plished by settting weights so that these trajectories are cow-
operate' hisy extrat'ting weiak coiiariac'es ailong very large polpi- strained inl thI' right wa%. Emipirically com nstri ctted ssstemns do
hat iins of n-irolls what e t lit' oaZn ithtitles iftlh'ir i ndi'id a not represent arguiments and fillers literall with idt's t o,
activity. ()m this preniise a iioilinear dysnamiics can he coil- groips ofnodts. Heprese•itatioi is distrilbtedi, amid it is oil\ bI\
strimt(td (lre'eiiiatl 1991 ý that emtisiions the exist,'rit' ofhultiple principlh ('cOl Ott nt aialaksis of patthirn st'(lileet's oil 11(ldetl
t'laotic %tates and "iti'eraiit" tirajiectri's amontg thelm 'l'sIda iiits thal th' ( uitlimi's ofInl' classicial argmmoi'nt-llhler ideas c,.II
19'.')I ). tihli spatial ti'ih't('* is c.rucial. intl althit h it c'an be' lrghiidit inhto logus. ihntis iijki's it hard to tiidc'rstait plrocess-

iitiisiiiil~h' bin- i,'t•'•m'l, as lih5i' Ims'kii. th11ooihi Iluassagii,,i of i .ig \yitli distlihbltit ii' tie'iitdiiis ill ,laisi tal ln. Ilis ,i -
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ever, distributed representations are more difficult for a net to Self-organizing neural models of
acquire and manipulate (Chalmers 1990). categorization, Inference and synchrony

Empirical model building is no better than classical at proving
how the brain actually functions. However, it does sensitize us to Stephen Grossberg
the idea that understanding reasoning in the brain may require Cet fo Adaptrv Systems wd Department of CoWNt and Netwa
transforming classical constructs rather than models for their Stem Bon Udwerite Bost on, MA02215
literal implementation. Given the possibility that distributed Ete oton Uk'wws.booM02
coding avoids the need for specialized architecture, speculation
on details of an architecture specifically designed to support Shastri & Ajjanagadde (S&A) note how carefully controlled
reasoning on local (or semilocal) representations is premature. synchrony may subserve a rapidly evolving inference, but they

I have a number of more detailed worries about S&A's do not show how the knowledge being synchronized can be
proposal: learned, and how this learning process leads to the desired

1. 1 wonder how the theory deals with negation. How do we syn, [rony relationships. A recently discovered family of super-
handle negative conclusions, and (say) rules of the form: No A is vised learning, categorization, and prediction architectures pro-
B? It is true that negation can be implicitly expressed in vides insight into aspects of this fundamental problem. These
production rules by replacing a negative consequent by the neural architectures are generically called ARTMAP (Carpenter
corresponding positive antecedent. But applying this strategy to & Grossberg 1991; 1992; Carpenter et al. 1991; 1992).
"No A is B" leaves the consequent empty, and there is no ARTMAPS can learn arbitrary analog or binary mappings be-
provision for empty consequents in S&A's scheme. As a useful tween learned categories of one feature space (e.g., visual
benchmark for how serious problems involving negation might features) to learned categories of another feature space (e.g.,
be, I invite S&A to explain how "No one is taller than himself" auditory features). They perform well in benchmark studies
could be a reflexively reached conclusion, against alternative machine learning, genetic algorithm, or

2. 1 still wonder how rules can be learned. The strategy neural network models. This may be because the Adaptive
(described in sect. 10.6) of tuning weights to establish the right Resonance Theory modules that go into ARTMAPs were derived
connections between predicates only works if generic links from a study of brain data (Grossberg 1987; 1988). In particular,
between all the right predicates are already available. Providing ABTMAPS can autonomously learn, categorize, and make predic-
links for all possible connections between all possible predicates tions about:
sets off a combinatorial explosion. (To make matters worse, there 1. Rare events: A successful autonomous agent must be able
have to be separate links for forward and backward reasoning to learn about rare events that have important consequences
since neurons do not conduct in two directions.) So S&A's model even if those rare events are similar to a surrounding cloud of
predicts that many rules simply cannot be learned because the frequent events that have different consequences. Fast learning
predicates happen not to be "neighbors." Distributed represen- is needed to pick up a rare event on the fly.
tation avoids this problem because "links" between arbitrary 2. Large nonstationary data bases: Rare events typically oc-
concepts are forged as processes rather than in physical space. cur in a nonstationary environment whose event statistics may

3. This problem is compounded when we turn to proposi- change rapidly and unexpectedly through time. ARTMAP con-
tional attitudes, prepositions, and other modifiers. Consider all tains a self-stabilizing memory that permits accumulating
the sentences we can construct by adding and deleting elements knowledge to be stored reliably in response to arbitrarily many
to "Al saw Carol deceptively sell Dogl to Ed in the presence of events in a nonstationary environment under incremental learn-
Frank under the influence of alcohol in a park." To represent ing conditions until the algorithm's full memory capacity, which
these sentences, modifiers and propositional attitudes must be can be chosen arbitrarily large, is exhausted.
dealt with as argumenws of the main verb ("sold" in this case). 3. Morphologically variable types of events: In many envi-
(We certainly cannot represent every possible combination as a ronments, some information, including rulelike inferences, is
separate predicate.) But then each predicate must have argu- coarsely defined, whereas other information is precisely charac-
ments for all conceivable (and eventually learnable) modifiers terized. ARTMAP is able to adjust its scale of generalization
and propositional attitudes. The space investment in each predi- automatically to match the morphological variability of the data.
cate is massive. Furthermore, I see no practical way to account It embodies a Minimax Learning Rule that jointly minimizes
for reflexive reasoning from "Al sees that p" to "Al knows that p." predictive error and maximizes generalization using only infor-
(Reflexive reasoning for iterated attitudes or sentences where mation that is locally available under incremental learning
modifier scope matters would also be impossible.) The argu- conditions in a nonstationary environment.
ment structure of English is too complex and open-ended to be 4. Many-to-one and one-to-many relationships: Many-to-one
written into our neurons. learning takes two forms: categorization and naming. For exam-

S&A may complain that I take their model too literally. They pie, during the categorization of printed letter fonts, many
say in section 1.4 that their model is not intended as a blueprint similar exemplars of the same printed letter may establish a
of how the brain performs. However, if their model is not at least single recognition category. All categories that represent the
a provisional neural wiring diagram, then it is not clear how the same letter may be associatively mapped into the letter name or
arguments involving neural time and space constraints they cite prediction. This is a second many-to-one map arising for cul-
are relevant in supporting their model over its competitors. If tural, not visual, reasons.
links indicate functional structure, we must wait until we know One-to-many learning is used to build up expert knowledge
how links are implemented before we apply considerations about an object or event. A single visual image of a particular
concerning (say) speed of neural conduction. animal may, for example, lead to learning that predicts animal,

dog, beagle, and my dog "Rover." In many learning algorithms
the attempt to learn more than one prediction albut an event
leads to unselective forgetting of previously learu•.d predictioins
fi)r the same reason that these algorithmns be.onu'e unstable in
re'sponse to nonstationar I data.

ARiTMAP S' VSt('iS (tSexlhit properties 1-4 because the%- imple-
mient a set of he'uristices qualitatively differcnt froin those of
('rr)r-J)ase(l learniing systems:

5. P'ay att('ntion: Al ARTrMAP Callan leartn toup-dOm-in it'X t-

tinms ,41(ls (.call(' prrototYp)es. priimes, or qminces' Itmhat ca.llm
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the system to ignore masses of irrelevant data. These queries ComitNIng, or peraps comipm,
"test the hypothesis- that is embodied by the category as they appro&Chs to the dyr1na t-n ng probem
suppress features not in the prototypical attentional focus. With smikw capaciy Iimitot s

6. Hypothesis testing and match-based learning: The system
actively searches for recognition categories, or hypotheses, Graeme S. Halford
whose top-down expectations provide an acceptable match to
bottom-up data. The top-down expectation focuses attention PuclaWsoorvmwn, k o/Ouaatwi. Quwuscwud 4072,
upon, and binds, that cluster of input features that it deems to be E ,.I:. gshppychpsy.uq.oz.au
relevant.

7. Choose globally best answer: After learning self-stabilizes, Shastri & Ajjanagadde (S&A) have provided an impressive
every input directly selects the globally best matching category demonstration of the power of synchronous activation to handle
without any search. the dynamic-binding problem in reflexive reasoning; however,

8. Calibrate confidence: A confidence measure, called vig- predicate-argument bindings can also be handled using the
d/ance, calibrates how well an exemplar matches the prototype tensor proluct approach advocated by Smolensky (1990). Hal-
that it selects. If vigilance is low, even poorly matching exem- ford et al. (1993) have proposed an analogical reasoning model in
plars can then be incorporated into one category, hence com- which an N-place predicate is represented by a tensor product of
pression and generalization are high. If vigilance is high, few rank N + 1, with one vector representing the predicate and N
exemplars activate the same category, hence compression and vectors representing arguments. We therefore have a situation
generalization are low. In the limit of very high vigilance, in which two very different approaches have similar achieve-
prototype learning reduces to exemplar learning. The Minimax ments. Synchronous activation can handle reflexive reasoning
Learning Rule adjusts the vigilance parameter just enough to and analogical reasoning (Hummel et al., in press); tensor
initiate hypothesis testing to discover a better category, or product representations handle production systems (Dolan &
hypothesis, with which to match the data. In this way, a mini- Smolensky 1989) and memory retrieval (Humphreys et al.
mum amount of generalization is sacrificed to correct the error. 1989), as well as analogical reasoning.

9. Rule extraction: At any stage of learning, a user can These approaches may be competitive, or they may be com-
translate the state of an ARTMAP into an algorithmic set of if-then plementary, so that synchronous activation models deal with
rules. ARTMAPS are thus a new type of self-organizing produc- reflexive or implicit reasoning and tensor product models might
tion system. The Minimax Learning Rule determines how be more appropriate for reflective or explicit reasoning. Tensor
abstract these rules will become, product representations can represent certain properties of

10. Properties scale: All the desirable properties Of ARTMAPS relations that do not appear to be possible for the synchronous
scale to arbitrarily large problems. activation approach. A relation R(a,b .... n) can be handled

11. Working memory: The input level of an ARTMAP mnay be a by a tensor product of rank N + 1 (Halford et al. 1993). This not
working memory -!. ýigned so that any grouping of its stored only represents the predicate-argument bindings but also the
events can be stably learned in real time. Using STORE working interactions within the structure. For example, the tensor prod-
memory models (Bradski et al. 1992a; 1992b), temporally evolv- uct representation of R(a,b,c) represents the influence of c on
ing rules may be learned. R(a,b), the influence of b on R(a,c), and the influence of a on

12. Temporal synchrony: The first ART articles (Grossberg R(b,c). The synchronous activation approach can handle slot-
1976; 1978) predicted that visual cortical codes could be ex- filler bindings but it does not appear able to represent these
pressed by synchronous oscillations in which cooperatively higher-order relations that are important to complex concepts.
linked cells oscillate in phase and that oscillations could be It is possible to collapse over any vector in the tensor product
replaced by equilibrium points if no "slow" variables, such as (Humphreys et al. 1989), so any subset of the possible relations
inhibitory interneurons or chemical modulators, exist. Within can be represented. For example, given that R(a,b,c) is repre-
ART, a synchronized oscillation can occur when bottom-up sented by a rank-4 tensor product, R(a,b), R(b,c), R(a,c), and
feature-selective and top-down expectation signals fuse into an R(a,b,c) can be processed. Furthermore, any argument can be
attentive resonance that can support new learning and a con- retrieved given the predicate and remaining arguments, and the
scious perceptual experience. The predicted linkage between predicate can be retrieved, given the arguments. Thus, the
standing waves, attention, learning, and conscious experience tensor product representation has the flexibility and power that
has recently attracted much interest (e.g., Crick & Koch 1990b). are characteristic of explicit or reflective reasoning.

After ART was introduced to analyze data about attentive There are interesting correspondences in the way capacity
learning and recognition, Grossberg and Mingolla (1985a; limitations are handled by the two models. In synchronous
1985b) modeled processes of preattentive vision. A new type of activation models the number of distinct phases is limited to
bipole cell was predicted to link perceptual features coopera- between 5 and 10, whereas Halford et al. (1993) propose, after a
tively into emergent boundary segmentations within a Bound- review of the working memory literature, that tensor product
ary Contour System (BCS). Grossberg and Somers (1991; 1992) models are limited to rank 5. They argue that the flexibility and
have demonstrated that both the BCS and ART circuits can link power of tensor product models in handling complex reasoning
cells cooperatively into rapidly synchronizing oscillations over requires each argument to be represented by a separate vector,
large cellular distances. The oscillation is not necessary for which has the status of a dimension in that it provides an
binding per se, because features can be bound in a way that independent source of variation. This corresponds to a distinct
explains large data bases using BCS and ART models in which no entity in S&A's terms. The information represented by each
oscillations occur. The oscillations provide an extra degree of dimension, or each distinct entity, is variable, often over a wide
freedom that scales the amount of asynchrony that can be range, but the number ofdimensions, or entities, is limited by
tolerated before the wrong object parts may be bound together. the rank of the tensor product, or number of phases. Thus the

models agree that the limit is not in the amount of information
expressed by each entity or dimension but in the number of

AC K N OWL El) (IM EN TS independent dimensions (entities) represented in parallel.
The author wishes to thank Kelly D)imnont, I)iana Meyer,. and IRoin It therefore aplpear.s that synchronous activation and tensor
Locke for their %aloahle assistance in the preparation oftdiv manuscript. product models have connverged on a theoretical basis for the
The althor is supported in part bv the Air Force(- Offive of Scielntific concept ofait chunk (Miller 1956), which is an independent item
P&'searclh (F4%ti20-.92-J-+0225). I)ARPA (AFOSIR 90-1X183). ,.ud the Office of information of arbitrary size and is the unit that best delhles
of Naval le'wM'rch ( )\F N(X) 14-91 -- 41M ). nmnan-prucessing limitations. Both explain the fi nding that the
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amount of information that can be represented in any one item improves as a function ofexposure to related domains (Barnes &
(the chunk size) is variable over a wide range but the number of Hampson 1992). A solution to the acquisition problem in the
independent items (number of chunks) that can be represented context of this model would probably help solve the problem of
in parallel is very restricted, memorizing facts or of converting dynamic bindings to the static

patterns S&A also identify.
ACKNOWLEDGMENT It would also be interesting to see how easily the model
This work was supported by a grant from the Australian Research Grants extends to analogical thinking. Both analogical thinking and the
Scheme. more typical inferences considered by S&A can be construed as

similar processes in that both involve a match between domain
invariant information. It should not be impossible to extract
higher-order relations between predicate arguments across

Rule acquisition and variable binding: many pattern sets and to use these to support analogical reason-
ing in a system such as S&As.Two sides of the sarne coin1 Finally, an area that the field as a whole could now usefully

P. J. consider is the movement from reflective to reflexive reasoning,
P. J. H f which might be expected to follow practice in certain situations.

Dpariment 01 Applied Psychology Ueraly Collg Coa*, ka*W This mode-shift in reasoning seems likely given the assumption
Electrone•l: waNzaW8O26(ainccvax.uc.c that reflective reasoning involves conscious deliberation and
Shastri & Ajjanagadde (S&A) provide a number of important reflexive reasoning is more automatic, and the evidence that
contributions to our understanding of the psychology of reason- practice generally shifts processing in the direction of automat-
ing and inference and its modeling with connectionism. Their icity. Previous accounts of strategy shifts in reasoning and prob-
distinction between reflexive and reflective reasoning is well lem solving have focused on changes in the representation used,
made and in accordance with a growing consensus that many such as from visual image to verbal (e.g., Kosslyn et al. 1977); it
types of human inference, particularly those directly involved in might be more fruitful now to consider whether (in addition or as
language comprehension, are simply too fast for the sort of an alternative to these representational shifts) there is a shift
deliberative processing associated with, say, solving syllogisms, from reflective to reflexive reasoning modes - though as S&A
The network models discussed have the advantages of being astutely point out, there may well be some situations that simply
computationally simple and neurologically plausible and make do not permit reflexive reasoning (sect. 8.2.5).
good contact with other areas of research such as working
memory. On the whole the paper makes a serious and distin-
guished contribution to the area and will, most likely, be widely
cited.

Some clarification of the manner in which rules are acquired Not all reflexive reasoning is deductive
would be in order, however, and would allow the theory to
develop further. S&A are obviously alert to this and touch on a Graeme Hirsta and Dekal Wub
crucial point when they state that they are considering learning Departrnert of Computer Scienc, University of Toronto. Toronto, Ontano,
"in the context of preexisting predicates and concepts where it is CArada M5S 1,4; boepeAnent of Computer Sc.ene, Uraversty of
desired that the cocc'urrence of events should lead to the Science and Technology Clear Water Bay, Kowloon, Hong g
formation of appropriate connections between predicate argu- Electronic mial: -gh4acs-loh•s•. be. dekawr(racMa#.Usthk

ments" (sect. 10.6). Recent developments in the learning theory Shastri & Ajjanagadde's (S&A's) model is a well fleshed-out
on stimulus equivalence and relational frame effects bear on this proposal linking conceptual inference with neural representa-
issue and indicate the importance of quite extensive exposure to tion. Assigning one phase to each concept occurrence is a clever
such cooccurrent events. Briefly, these developments suggest idea that is worthy of further development. In this commentary,
that large amounts of bidirectional training across a number of we discuss some of the problems that remain.
domains are required by children before even the simplest In their note 3, S&A see their notion of reflexive reasoning as
stimulus equivalence relation can be acquired. For example, a generalization of the well-established notion of automatic
even simple symmetric relations between entities are typically processing. In faet, the converse would seem to be true; S&A
not exhibited by children of less than two years old. It seems talk about rapid deductive inference as if it were the only kind
rather that a large number of forward (A goes with B) and of reflexive, or automatic (unconscious? - cf Velmans 1991),
backward (B goes with A) mappings must be experienced across reasoning people perform. In reality, it is just one of many kinds,
a series of domains before domain invariant information (rules) some of which are quite general and others of which are very
can emerge. Once these are acquired, merely learning that C specific.
goes with D is sufficient for the reverse relation, D goes with C, 1. Determining a probable relationship between two or
to be inferred (see Hayes [19911 for a detailed account of more concepts. This is the kind of reasoning we do when we
relational frame theory). The key point is that rules themselves interpret novel (unlexicalized) nominal compounds such as
are never acquired directly or within one domain; instead, the temporal pattern matcher. (Downing 1 19771 has shown that the
invariant information that instantiates them emerges through- class of relationships between elements in nominal compounds
out a series of behavioural interactions across several domains, is large and unconstrained; but see Levi 1978.)

Viewed thus, rule acquisition is the reverse of the variable- 2. Computing the semantic distance between two concepts,
binding problem. Variable binding entails the attachment of which is a fundamental part of such automatic reasoning as
content with a rule (or an abstract structure) for use in a lexical disambiguation (Charniak 1983; Hirst 1987: 1988; Hirst
particular situation; rule acquisition and instantiation involves & Charniak 1982) and certain kinds of problem solving (Hendler
the functional detachment of cornnion structure from a set of 1987). This kind of reasoning was achiev'c-d in the work cited by
variable contents for use in future situations with new content, means of marker passing; but, notwithstanding S&A's remarks
In S&A's terms this means that examples of both forward and about the similarity of their approach to marker passing, the
backward pairings between predicate arguments must be ex- computation of semantic distance does not seem amenable to
plicitly experienced, in a variety of situations. li)fore the sorts of any kind of phase encoding, for it relics cruicially upon a static
inferences they discuss are pjossibl,. [i our own work we hav' property of the knowledge base - that the physical dislance

o(h(hle~d soine of these efh'cts and shown how i)erformance on hetween representations of concepts corresponds reasomablv
inference tasks, inchidi(g reasoning abolut kinship relations, well to thle sei antiu , distan'e.
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3. E/aborative inferences such as supplying typical values for Because variable bindings make full probability comptiation too
roles whose fillers are left implicit or unspecified. For example, expensive, Wu also gives a robust approximate method, AME
subjects reading Mary stirred the coffee showed subsequent (approximate maximum entropy), that allows arbitrary subparti-
fiilitation for spoon in a word-completion task (Whitney & tions of probabilistic constraints and hypotheses to be pre-
Williams-Whitney 1990). (We speculate that this is not mere selected. How tractable approximations such as this could be
word association; for example, Mary stirred the paint would incorporated in a fixed connectionist architecture is an impor-
facilitate stick but not spoon. This hypothesis is presently being tant issue for future research.
tested in work in progress by the first author in collaboration S&A compare their temporal-synchrony method for binding
with Michael K. Tanenhaus and Gail Mauner.) Similarly, Cahill with the reduced-description approach (sect. 9.4). However, the
and Mitchell (1987) found that readinga passage that described a comparison is based on the encoding of rules as directed depen-
goal and a precondition for achieving it led to the inference of a dency graphs. Combining reduced descriptions with rule
plan. The exact conditions under which elaborative inferences graphs is inappropriate because the object of reduced descrip-
are made has been the subject of some debate in the literature tions is to avoid representing rules locally (e.g., Pollack 1988;
(Dosher & Corbett 1982; Lucas et al. 1990; Whitney & 1990; Stolcke & Wu 1992). Also, contrary to S&As statement
Williams-Whitney 1990); here we need only note that they do that reduced-description approaches "will also have to be aug-
occur under at least some conditions. mented in order to deal with noise," inherent resistance to noise

4. The interpretation of direct and indirect speech acts and of is one of the nice properties that results from distributed
discourse repairs and the recognition, in general, of intent, as representation.
distinct from literal meaning, in discourse. Such tasks, when
described in full logical detail, are extraordinarily complex (cf. ACKNOWLEDGMENTS
Allen & Perrault 1980; Cohen et al. 1990; Mefoy 1993; Mcdoy & This commentary was written while the second author was at the

Hirst 1993). Although such interpretation is surely based on Department ofComputer Science, UniversityofToronto. Preparation of

compiled rules rather than carried out from first principles each the commentary was supported by a grant from the Natural Sciences and
time (cf. Gibbs 1983), it remains automatic and not deductive. Engineering Research Council of Canada.

More generally, much expert reasoning is reflexive interpreta-
tion, involving the recognition and categorization of patterns in
the domain of expertise (see, e.g., Cooke 1992, and the refer-
ences cited therein). (Note that this is not categorization in the
sense that S&A use that word in their sect. 2.4.) On the artificial Intelligence paradox

5. Abductive inference, which can also be extremely rapid.
On this, S&A allude to another paper of theirs (Ajjanagadde Steffen H611dobler
1991), but offer no details. InfelMo'k, Infotmatik, Technische Hochschule Darmstadt, D-6100

Moreover, S&A are not clear enough about neural plausibility Darmstad, Germany
- specifically, whether individual neurons or ensembles in their Electrioic mall: steen•@inte#ektik.informatik.th-darmstadt.de
representation can possibly have biological correlates. On the Shastri & Ajjanagadde (S&A) claim that their "computational
one hand, the imposition of detailed constraints on connectivity model takes a step toward ... resolving the artificial intel-
and firing rate implies a biological interpretation. On the other ligence paradox," namely, the gap between the ability of humans
hand, their model is essentially localist; the representation to draw a variety of inferences effortlessly, spontaneously, and
seems biologically implausible even when symbolic neurons are with remarkable efficiency on the one hand and the results about
replaced by localist ensembles late in the development (sect. the complexity of reasoning reported by researchers in artificial
7.3). A symbolic representation is perfectly acceptable at an intelligence on the other hand. This claim seems to be too
abstract level of explanation, but experimentation with timing strong. S&A's logic has certain special features. These features
parameters makes sense only if the representation itself is are quite remarkable and are the result of an attempt to find a
neurobiologically consistent, class of formulae which is as expressive as possible and whose

We believe that in certain ways the model is closer to marker satisfiability can be decided by the propagation of rhythmic
passing than the authors suggest. They refer to Fahlman's (1979) activity in parallel time bound by the length of the shortest proof
original proposal (sect. 3) and to generate-and-filter systems that and with space bound by the size of the formula. Nevertheless,
"evaluate the relevance of... paths [after collisions]" (note 14) from a logic point of view the expressive power of S&AKs system
(e.g., Charniak 1983; Hendler 1987; Hirst 1987; Norvig 1989). is fairly limited. And the mere fact that artificial intelligence
However, other marker-passing models have been proposed researchers have not investigated this particular logic does not
where collisions generate inferences in first-come, first-served imply that a significant step toward resolving the artificial
fashion (e.g., Martin & Riesbeck 1986; Wu 1989). Markers carry intelligence paradox has been made.
variable-binding information rather than what S&A call "back- But have artificial intelligence researchers really not investi-
pointers to the original and immediate source of the marker" gated S&A's logic? Because of the imposed restrictions, S&A's
(ibid.), and markers arriving at the same node are considered to system need not unify expressions but the matching operation
"collide" only if their bindings match. If we further impose a suffices. Whereas unification is inherently sequential (Dwork et
phase for each variable, a very similar model results. al. 1984), matching is known to be parallelizable in an optimal

The model as proposed does not accommodate uncertainty, way (Ramesh et al. 1989). There is also a striking similarity
Indeed, the "more complex messages" (ibid.) that are carried by between S&A's reasoning mechanism and certain reduction
markers are also partly to handle probabilities (Wu 1989). S&A techniques applied in automated theorem provers such as the
suggest integrating temporal synchrony with an earlier eviden- evaluation of isolated connections (Bibel 1988). For example, if
tial system (sect. 9.2), but defining a probability distribution each variable occurring in the conditions of a rule occurs also in
over inferences is not straightforward when variable bindings the conclusion of a rule then a query, all of whose arguments are
are permitted. This is because the binding hypotheses them- hound to constants, can be solved by evaluating isolated connec-
selves interact, both logically (sa., by mutual exclusivity) and tions only in precisely the sami' way that S&A's system solh'es
statistically. So it is not eveln clear what the finctional specifica- this query. As shown by lHibldohlbr (1990) the evaluation of
tion ought to be. isolated connections can be applied in parallel. Moreover, if a

An approach that imight therefire help is the maximum- lormula is as restrictedi as mentioned above and can be soled by
entropy distribution as generalized for hypotheses involving applying this reduction techniqpe only; th'en the bounds on tine
arbitrary variable hind iis (torinlated bv Wu l992aý 1992b). ), and space are comparable to the" Ibo nds in S&A's system. But
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whereas the reduction techniques in an automated theorenm ously creating a new pattern; in tie event of superposition,
prover are applied in the larger context of proving the satis- binding errors are inevitable. Intermediate degrees of distribu-

fiability of an unrestricted first-order formula, S&A's system is tion present intermediate likelihoods of binding errors. "
designed to show the satisfiability of a very special class of The value of synchrony is that it allows a network to use a
fonnulae and, hence, is more elaborate for this special class. If distributed representation without being subject to binding
the similarity between reduction techniques applied in auto- errors, thereby alleviating the tradeoff between similarity and
inated theorem provers and the computational model presented systematicity. There isacatch, however, which we term the one-
in this article holds for most of the special features, then S&A's letel restriction: Synchrony can only represent element bind-
work shows that automated theorem provers which apply these ings at one level of abstraction or hierarchy at a time. That is,
reduction techniques in parallel are adequate in the sense that synchrony cannot simultaneously represent the binding of ele-
they solve simpler problems faster than more difficult ones. mnents to each other and also the bindings of the units within the
Unfortunately, the authors have not investigated this similarity. patterns representing those elements. This restriction is evi-

The results of the target article would be a step toward dent in S&A's model. The representation of propositions is
resolving the artificial intelligence paradox if commonsense distributed over multiple predicate and object units but the
reasoning problems were expressible in S&A's logic. The paper predicates and objects themselves are strictly localist. The one-
contains some predications on this topic and it remains to be level restriction implies that hierarchical structures will be
seen whether these predictions hold. If they do then the gap difficult to represent. It is unclear, for example, how S&A would
between the ability ofhumans to draw a variety of inferences as if extend their system to represent propositions such as "Jane
it were a reflex and the results about the complexity of reasoning knows that Ted gave Mary flowers," in which an enstire proposi-
reported by researchers in artificial intelligence is not a paradox tion (rather than a simple object) is hound to the role of "what is
at all. If problems that can be solved effortlessly by humans can known."
be expressed in S&A's logic, then these problems are just The one-level restriction has other important implications for
simpler than the problems investigated in the artificial intel- S&A's model. A basic strength of the model is its capacity to stack
ligence community, an unlimited number of predicates on top of an object without

additional cost (i.e., any number of predicate units may fire on a
ACK NOWL ED o hn E NT given time slice). This capacity is critical both to the model's
i would like to thank Aneij Beringer, Joachim Diedenrch, and Franz operation (it is directly responsible for its ability to "search" in
Kurfess for their comments on this commentary parallel down multiple inference paths) and for its behavioral

predictions (specifically, that many predicates modifying few
objects should require less capacity than few predicates modify-
ing many objects). But S&A's model can only stack predicates

Distributing structure over time because its representations of predicates are nonoverlapping
(localist). If S&A adopted a distributed representation for predi-

John E. Hummela and Keith J. Holyoakb cates then stacking would entail sacrificing systematicity of
Department of Psychology, University of California at Los Angeles, Los bindings. S&A's use of localist predicates is thus more than a
Angeles, CA 90024 notational convenience; it is an integral part of the model's
Elictronic mall: .jhommelocognet.ucla.edu; bhldyoaO, cogfnt.tuca.edu architecture with far-reaching implications.

Shastri & Ajjanagadde (S&A) have made an important contribu- The one-level restriction does not imply that it is impossible

tion to the development of a connectionist representational to use a distributed representation at more than one level of

theory that accounts well for the fundamental systematicity of abstraction; rather, it implies that if the lower-level (e.g., predi-

human reasoning. The most basic contribution of their work is cate) representation is distributed then multiple elements of this

its demonstration that a connectionist-style model can represent kind cannot in general be combined within a single time slice.

and use propositions and, more generally, structured informa- That is, S&A could represent their predicates in a distributed
tion. Despite the current flurry of interest in synchrony for fashion but they would no longer be able to stack them. In our
binding within the neural network community, comparatively own work (Hummel & Holyoak 1992; Iluninel ct al., in press)
few modelers have proposed serious accounts of how synchrony we have explored the use of synchrony to represent proposi-

can actually perform useful work. Typically, networks are shown tions. Like S&A's model, ours uses synchrony to bind objects to

to establish synchrony and the functional significance and capac- case roles within propositions; but unlike S&A's model, ours
ity of that synchrony is left to the imagination. In contrast, S&A uses a distributed representation of objects and predicates. The

provide an explicit account of the representation of structure via benefits of our representation are all those typically associated
synchrony in a connectionist-style architecture. with distribution (e.g., similarity, automatic generalization,

Further work on the use of synchrony in knowledge represen- etc.). The cost is that our model cannot stack predicates in the
tation is needed, and a number of important issues deserve same unbounded manner as S&A's model. Rather, it represents
careful scrutiny. We consider one of the most basic issues: the the binding of one object to only one case role per time slice.

inherent tradeoff between distributed representations and sys- We have come full circle, returning to the tradeoff that

tematic bindings among units of knowledge. The primary advan- originally motivated the use ofsynchrony. S&A's model and oars

tage of a distributed representation is its ability to capture represent opposite extremes of this tradeoff, only this timle,
naturally the similarity structure of the represented domain synchrony - already assumed - is not available to case our

(similar entities can share a greater number of units in the dilemma. Some degree of distribution at the level of predicates

representation than dissimilar entities). The disadvantage is that seems necessary; thus S&A are forced to search an IS-A bier-

binding systematicity decreases (i.e., the likelihood ofa binding archy to capture similarity relations. And our restriction of on'

error increases) with the extent of distribution. Consider the object-to-case-role binding per time slice may entail processimg
extreme cases. In a purely localist representation, no binding that is too serial for the type ofreflexixe reasoninig p'rf)romed by

errors are possible. If there are N units, each representing a S&A's model. An interesting question 'otiC'riis what conlpro-

different concept, then the network can simultaneously repre- inises are possible between these extrei('s (e.g., repeated

sent its entire vo'abulary of concepts without any ambiguity sampling of randonilv stacked distributed representations). It

aiomt what is being represented. The other extreme is the sect alls that the tradeoff between dist ribaition and syste 1ilat icit \ is

completely distributed case, iu which each of the 2T binary a real one, and synchruny for dynamia ic binding - althoil h it

patterns possible over N units represents a distinct concept. in castes the pain of the tradeof" - is not suthifcient to tamake it

Itis case. no two) pattcras may Ile saiperiimposecl with1 iou it Spa II- (Idisappear coui ph't ly.
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Synchronization and cognitive carpentry: 1987). Synchronization by associative cooperation and local
From systematic structuring to simple competition as described in section 7.3 will suffice to do the job

only for small-scale problems.
At a more realistic scale of both system and problem complex-

ity there is no guarantee of smooth convergence to a consistent
E. Koerner global solution (or of any decision at all) in a limited time.
HonWa R & D Co., WAKO Research Center. ChuG Wako-shk, Saitana Reasoning in such asynchronous(!) systems does not get trig-
351-01, Japan gered with well-defined structures in space and time but distrib-
Wehtronle mall: koerner(a wrc.'onda.co.jP uted activation seeds (activated local relational structures) start

I would like to relate this thought-provoking target article by locally synchronous oscillations (or better, reverberations) that
Shastri & Ajjanagadde (S&A) to the dynamic linking by synchro- have the aggressive tendency to occupy more systems resources
nization of rhythmic activity in neural networks. This has been to achieve the activation of the most possible representation.
discussed and simulated for sensory segmentation (Shimizu However, with growing system complexity, this is a typical case
et al. 1985; von der Malsburg & Schneider 1986) and for of combinatorial explosion among alternative decisions.
knowledge-dependent image decomposition and its resynchro- Exclusively local control is not a solution for this problem,
nization for interpretation in vision, including the development even if we take into account that several alternative decisions
of alternative hypotheses in a quasi time-sharing processing can be developed concurrently with the proposed phase label-
mode at separate phase positions of the rhythmic activity (Koer- ing. The frequency and phase position of a locally evolving
ner et al. 1987; 1990). Whereas those approaches dealt with oscillation of a relational structure is defined by its size, struc-
signal level description and the transition from signal to symbol ture, and the sensory (or internal) call that triggered it (if you
level, S&As approach bridges to a more elaborate structuring of accept the at least partly analog-type evaluation of input activity
the represented knowledge, applying this rhythmic control as a in neurons and therefore also in neuronal oscillating clusters).
mechanism for easy reasoning in sophisticated knowledge struc- Hence, there is not only the range of 40-60 Hz observed in early
tures, dynamically linking just that part of the stored knowledge visual processing (small relational structures), but, with the
that is needed to solve the problem posed. This is the comple- increasing dimension of the dynamically linked cluster in this
mentary aspect of the above-mentioned approaches (see sect. aggressive competition for a growing range of dominance, a
2.5). large variety of irregular frequencies (and of phase positions

This contribution bears on the still controversial issue of within these frequencies) emerge. With respect to neural pro-
whether or not oscillatory phenomena in cortical recordings are cessing we expect this range to be between the highest fre-
relevant to an understanding of cortical processing: Yes, oscilla- quency of about 40-60 Hz (complete matching of inputs to all
tions make a lot of sense there. Having dealt with directly the requisite eliciting conditions for this parallel represented
related problems from a similar point of view, I agree with S&A knowledge structure) and the lowest one (defining the largest
in many respects, but instead of simply summarizing all the possible time interval in which a partly matched representation
points I agree with, I will discuss extensions of the conceptual can self-amplify by synchronizing related representational
design of the model that are needed to bridge the gap between structures that were not coherently active initially) which we set
the signal and the symbol level approach and to give a more (for several reasons) to the 4-8 Hz of the hippocampal theta
detailed description of characteristic aspects of reasoning and rhythm (Koerner et al. 1990; 1991; submitted). The more simple
decision making in brainlike systems. such a parallel representation is, the higher the probability it

I strongly question the statement (sect. 3.4) that there is no will already be activated initially by the complete set of condi-
need for any central control or system clock. S&A offer no tions (inputs) and will oscillate with the maximum frequency.
reasonable idea of how such tricky structures can self-organize Any such smooth relation between the relative global struc-
from unstructured data to allow the emergence of complex ture of a representation and its initial frequency of updating is
knowledge bases at all and to ensure the requisite flexibility, required for stability, so that more global representations with
giving the system the chance to modify and create symbols lower updating frequencies will have a chance to take increased
based on persistent subsymbolic descriptions (Smolensky 1988). control of lower-order representations reverberating at higher
In this respect learning is not a problem of adjusting weights frequencies (this is the condition for convergence of the decision
(sects. 3.4, 10.6) but of self-organizing the algorithmic structure. process). Hence reasoning with dynamic linking should not be a
How is one to resolve conflicts in a limited time in large-scale one-step synchronization; Several time scales are to be ex-
systems of this fundamentally asynchronous type if there is no pected. The solution is not to replace the definite system clock
helpful demon keeping track of all the locally emerging hypoth- by a couple of definite frequencies but to allow the emergence of
eses and setting the right phase position? If one has as definite a this almost chaotic variety of candidate relational structures in
setup for one's problem as in the proposed model (with preset- reflexive reasoning (characterized by its frequency and relative
ting of a definite and highly unitary structure, preselected phase position) and to guide it to a consisting global solution by
objects, facts, rules, and presetting the proper phase position for monitoring the emerging globalization tendency of coherent
each symbolic item to be handled) then the system cannot get activities and by setting a (theta-rhythmlike) adaptive system
stuck hut will behave as desired. But how is one to create the clock to the most promising phase position. This thereby forces
appropriate setup to make this approach work so smoothly? My the system to a globally consistent solution by focusing the
point is that this will turn out to be at least an equally decisive search on aspects related to this decision.
problem in dealing with a "real world problem" like image With reference to experimental evidence and to Minsky's
interpretation. (1985) idea of A- and B-brain we proposed the hippocampus as

This is not a problem resulting from simplification that can be this unspecific controller (Koerner et al. 1990; submitted). For
resolved in a straightforward way (sects. 9, 10). We have gone the such theta rhythm-driven reasoning the limitations on the depth
route S&A recommend in section 10.1, and implemented the of reasoning do not apply (see sect. 8.2.6).
internal and external scan path as knowledge controlled atten- We too have been attracted by Miller's (1956, 7 ± 2 rutle; we
tion mechanisms to decorrelate the parallel (in-phase) visual accordingly defined the number of alternative solutions the
input and resynchronize it from asynchronously emerging local model system should be able to handle concurrently (thereby
hypotheses to an increasingly global consensus, with antono- defining short-term memory). However, we related this ,mna-
monslv ranking alternative hypotheses at different phase posi- stire to the time scale of theta rhythin based on experimental
tions within the periodl of global rhythinic control I)rcx'ess('s facts more closely connected to the cognitive quality of nemiral
((;r(ss vt iI. 19)2: Koe'rneir & ltoheii, 1991. K• rnt'fir fet al. pr c('cssivig tfhan to the observed oscillatfion ii early vision (e
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the time interval between leedback-controlled saccadic eye What's mising? As S&A have pointed out, there is much that
movement, behavior-related phenomena in hippocampal theta the model does not yet account for, even within the realm of
and EEG recordings, or the statistical distribution of pattern reflexive reasoning. In suggesting areas for further work, it is
sequence length in human communication, etc.). perhaps most useful to focus on those in which a more complete

Hence, although 1 agree that this 7 ± 2 story may support account would help the most to provide corroboration of the
such a dynamic reflexive-reasoning scheme, I doubt one can model. Here are a couple of candidates.
directly and superficially relate observations on an early visual Learning. In addition to providing significant new constraints
process to the results of a psychological experiment involving on the form of these representations and a new source of
much more complex processes and structures. empirical tests, successful learning techniques will be required

before the system's ability to scale up to real-world proportions
and generality can be demonstrated.

Explaining. As pointed out in section 5 of the target article,
facts are retrievable by query processes but not rules or relation-

Reflections on reflexive reasoning ships between rules. Thus, it remains to be shown how an

David L. Martin explanation of a reasoning process could be given (as in S&A's
introductory example of Little Red Riding Hood). (Such anComputer Science Department, University of Cahtornia at Los Angeles, Los explanation would not necessarily fall within the realm of reflex-

Angeles, CA 90024 ive reasoning processes, but still the representations of rules
Elec•tronic mail: martin(4cs.ucla.edu would have to allow for such an explanation.)
Shastri & Ajjanagadde (S&A) have taken some important and classical versus conne•tionist architectures. In their influen-
impressive steps toward understanding aspects of human cogni- tial article, Fodor and Pylyshyn (1988a) questioned the viability
tive capabilities. Although it is still much too soon to know how of connectionist architectures as models of cognition except
much of their architecture is genuinely explanatory of human insofar as they are used to implement classical models, that is,
cognition, they have proposed a connectionist system that models that embody compositional representations and struc-
defines enough architectural and performance characteristics to tural sensitivity of processes. At the time, unfortunately, the
suggest a broad range of empirical tests and to invite a variety of idea of a classical model was roughly identified with completely
important extensions. Nevertheless, the system models only an general mathematical models of symbol manipulation such as
isolated portion of cognition - perhaps artificially isolated - and Turing machines, and the idea of a connectionist model was
we need to be clear about what kinds of evidence would serve as roughly identified with relatively unstructured (layered or corn-
meaningful corroboration of it. petitive) masses of neuronlike units. This led to a sense of

Refleisve versus reflectiv reasoning. S&A's presentation of paradox with regard to connectionist modeling: It was clear that
their system as a model of reflexive reasoning only is an approach a biologically plausible model had to be connectionist, and yet it
that is both laudable and troubling. it is laudable because it was equally clear that a connectionist implementation of some-
avoids the common tendency in artificial intelligence work to thing like a Turing machine could not be biologically plausible.
portray systems of limited capabilities, operating over restricted Models such as that proposed by S&A are beginning to
domains, as if they already capture the essence of some of the suggest the way out of this dilemma by showing that there exists
least understood, and most general, areas of cognition (McDer- a biologically plausible middle ground based on more structured
mott [1981] exposes this tendency well). For example, S&A have connectionist architectures that manage to implement limited
wisely refrained from making any claims with regard to the versions of compositionality and structural sensitivity but fail to
nature of conscious deliberation, which they consider to be approach the full generality of Turing machines. Some of the
characteristic of reflective reasoning. most interesting psychological work will probably center around

S&A's approach is also troubling, however, because it serves the empirical verification of the ways in which humans fall short
all too well to isolate the model from criticisms of its limitations of this full generality, and some of the most interesting philo-
and deflects many of the questions that are most in need of sophical issues will probably focus on refining our understand-
answers. To any question of the form, "Why can't this system ing of how such general mathematical models can best contrib-
display characteristic X which is clearly present in human ute to our understanding of intelligence.
reasoning?" it can be answered that X is characteristic of reflec-
tive rather than reflexive reasoning.

Thus, the most pressing need for empirical work related to
this model is in corroborating the reflexive/reflective distinc-
tion. Given that this distinction holds up, it will be necessary to What we know and the LTKB
delineate the boundaries of reflexive reasoning in humans em-
pirically before we can accurately judge the adequacy of this Stanley Munsat
model. Department of Philosophy, University of North Carolina, Chapel Hill, NC

Moreover, the isolation of reflexive reasoning in a model of 27599-3125
cognition raises as many hard questions as it deflects. Granted Electronic mail: undone(a unc.bitnet
that the distinction between reflexive and reflective reasoning is We are forever in debt to the field of artificial intelligence for
intuitively appealing, is there sufficient reason to believe that what we have learned from its failures. Among the legacy of
the two depend on mechanisms and representations that are insights from AI is the realization that the understanding of
essentially different? If so, how do we account for the apparently language in all its forms (including stories, jokes, arguments.
smooth integration of the two? How do we account for the and explanations of events and actions) requires that we be in a
instant availability of the products of one for pro'essing by the position to bring to bear a virtually limitless array of knowledge
other, or for the ability to give explicit verbal characterizations of and experience - instantaneously. Researchers in Al. heing in
reflexive reasoning, just as we do for reflective? !)o the sug- the business of data manipulation, would quite naturally con-
gested extensions to the model (e.g., function terms and encod- ceive the prohlem of "representing our knowledge of the world"
ing soft and defeasilll' rules) mnake sense for reflexive reasoning, and hringing it to hear oin the kidvrstandin. of lanigiage as
reflective reasoning, or both? In learning new rules, what is the threefold: (1) I low do the data get into the syst(em. (2) hosw arc
relationship between the reflective and reflexive reasoning they classified anid stored; and (3) how are tllhey gott'n to anld

)rc',sses and the representations they isc'? proce'ssed when needed fo~r a particular task (smi\. r 'ailiing and
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answering questions about a particular story). (The three prob- that the dancing couple is being complimented on their danc-
lems are not dealt with independently; each needs to be ad- ing. They are being compared to Fred and someone, so Fred.
dressed with the requirements of the other in mind.) and someone must be a famous dancing pair (famous because

If you suppose that the data base consists of stored proposi- their first names alone are enough to identify them). We thus
tions ("facts" and "rules"), and that there are tens of millions of expect the next name to be Ginger. But Rosemary interrupts
them, processing takes awhile. There will be searches through a with "Ethel," thus evoking the pair Fred and Ethel Mertz of the
large amount of data and long chains of processing and so the Al '1 Love Lucy" show. Having seen Fred and Ethel Mertz on
model becomes unrealistic as a model of human language television, the thought of them as graceful dancers strikes us as
understanding. hilarious.

Shastri & Ajjanagadde (S&A) have presented us with a con- Is "Fred and Ethel Mertz would be ridiculous as dancers" in
nectionist solution to the problem of how large numbers of our LTKB? In retrospect, it can seem as if it must be. But how
propositions are stored (the long-term knowledge base, or did it get in there? Was it being formulated as we watched the -1
LTKB) and activated when the time comes (e.g., when a ques- Love Lucy Show," as it were, getting us ready to appreciate the
tion is posed to the system). The connectionist language under- joke should it ever be made? If such a proposition is in the
stander is much faster because it does not require searches and LTKB, it is hard to imagine what is not. For example, how about
sequential processing steps in the manner of Al models. But at "Fred and Ethel Mertz were not a couple on the Jackie Gleason
the same time, the S&A model perpetuates a fundamental show"? Is that in the LTKB? If it is, did it get in there as a result
assumption of Al models of language understanding. They of watching the Jackie Gleason show or the "I Love Lucy" show?
assume that "what we know about the world" should be thought Again, if such a proposition is in the LTKB, it is hard to imagine
of as a set of (encoded) propositions. Let me call this assumption what is not. The list of who was not on the Jackie Gleason show is
the LTKB-assumption (or LTKB-A). very long. But in conversation someone mistakenly places Fred

I foresee two problems for LTKB-A as a mode for represent- and Ethel on the Jackie Gleason show (a natural mistake; there
ing what we know about the world and for showing how we bring was a neighbor-couple on that show, too) and I immediately spot
this knowledge to bear in understanding language. One prob- the mistake.
lem is that the LTKB will contain too much, and the other is that The problem does not just come up in story understanding.
it could not possibly contain enough. It should be noted at the Suppose I happen to be in a convenience store, along with
outset that the questions being raised here are not directed at several other people, when two men wearing ski masks hold up
the S&A model per se; their model was never proposed as rich the store. The next day I am asked questions by a police
enough to be applied to such problems as story understanding. detective, and I answer them as best I can. How are we to think
Rather, the challenges are being offered to call into question the about where the answers are coming from? One way to think
plausibilit?, of any model of story-understanding that is based on about this is to think of my witnessing of the events of the
LTKB-A. robbery as producing facts for the LTKB. But what facts?

The first problem can be illustrated with S&A's Little Red Everything that was true of the robbery that I was in a position to
Riding Hood story. Of all the millions of items in the LTKB that know? The detective asks, "How tall was the one with the green
have to do wih children, people in general and their behavioral ski mask?" I hesitate. lie says, "Was he taller than the cashier?" I
tendencies, people in relation to children, wolves, people in immediately reply "yes." Was that fact already encoded in the
relation to wolves, children in relation to wolves, people in LTKB?
relation to children in relation to wolves, ways of getting hurt, One reason this seems unreasonable is that if the answer to
and on and on, how do just the right propositions get invoked every possible question about our lives that we can answer is
(meaning just those propoAtions that are needed to make sense stored as a fact or rule there would just be too many. Second,
of the sentence "The wolf heard some woodcutters nearby and so how are we to suppose that these facts get prized off our
he decided to wait")? Cr'e might want to answer, "Well, those experience? What sort of mechanism could take our experience
are the propositions (actually, one of many possible sets of in the convenience store and produce from it all the facts that
propositions) that will make sense of the sentence in the story." there are in that experience (all the answers to all the questions
And that is no doubt true. And we, if prodded, can come up with that I could answer about that experience if asked)? The detec-
such a set of"sense-making assumptions" out of all the things we tive, having spent a career investigating such things, knows just
know about the world. But short of giving the connectionist what to ask. Some of his questions may strike me as odd. (Did
network a (homuncular) sense of what it takes to make sense of the one that did the talking come in the door first or second?) Are
the story, how does it select just the right pieces of background we to suppose that my inexperienced brain is going to know
knowledge needed to make sense of the story-sentence? But enough to load my fact bank with the answers to these (and all
even this is not the end of the problem. In addition to making other possible) specialized questions?
sense of story lines, we can recognize when a story line does not What all of this suggests is that we should not think of what we
make sense. Do we explain this as the reader of the story failing know about the world as a stored set of facts, even facts distrib-
to find facts in the LTKB that would make sense of the story? But utively coded, which can be accessed as needed. Rather, we
this will not do either. For story readers can tell you what would should think of experience as more holistically altering the
have to be the case in order for the story to make sense. And they system so that we can produce such facts when tile need arises.
certainly cannot find that in the LTKB. All of this suggests that But also, alterations in the system (from experience) would have
story understanding is in many respects more akin to story the result that we get on with the reading of a story when past
writing than it is to fact recalling, experience supports such facts as would have to be the case in

The second problem is that we are capable of bringing so order for the story to make sense.
much of our knowledge and experience to bear in language It is, of course, not easy to think concretely about how -to
understanding that we cannot have all of that stored as a set of model such a system. But then, we are talking about the hutman
propositions and rules. mnind. Nobody said it would be easy.

Walter an(] Jane get up for a few dances at a wedding
reception. As they' return to their table, their friend Jason says, N OT E

,rca, Wat eauifti dacin patner - ou wo . Thie jok-e is I)orrowe•(I from an e'piswxle of the tele,\'ision prograin"You twvo we're great. \Vhat b)eautifull dancing partners - yout two 'lnr."arY just liwe Fred Id " At this point, Rosemary interrup "hts

and 'omplm't,'s the st'tent'ce: "Ethel. "I Not everyone will get the
joke'. hi it ii f l I , a recn ,strnution of the elements of the joke is
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Coniputat lonal and biological constraints dynamnic binrdings andi~ type restrictions canbhe gelleralise'( to
In the psychology of reasoning p~rovide( binding strengths and type pireferences that c-an differ-

entiate between possible (lefeasiblek concluisions-
Third, S&A's use of type restrictions may explain one- commlioni

aMike Oakstard and bVike Malloch bias in reasoning tasks (Evans 1989)- I!1 "matching bias," stibl
Cognitive Neurocamputation Unit, University of Wales at Bangor. Gwyvnedd je.cts ten'id to ignore negations, instead matching named items
LL57 20G, Wales, UK (Evans 1972; 1983; 1989). When asked to construct a true
Electronic mail: *pssO27((t vaxa.bangor.ac.uk; bmike(a, cogsci~ed.ac.uk instance of the rule, 'Jfthere is at blue triangle onl thle right, then
Shastri & Ajjanagadde's (S&A't target article represents a po- there is not a red( square onl the( left," they may p)lace at blue
tential mnilestone in thle cognitive science/psychology of human triangle onl thle right anid a red square onl the left (Evans 1,972).
reasoning. Their proposal compels a departure from thle more Oaksford and Stenning (1992) have shownu that this bias is due to
traditional logicist Al perspe'ctive, tin which the development a dlifficult,, tin constructing appropriate coot rast-classo's. Thel(
and implementation of orore-or-less formal calculi have been the( mnaterial~s used in these experimients leave the interoded
goals (Braine 1978; Johnson-baird 1983; johtnson-bLaird & Byrne contrast-class amnbiguous, forcing subjects to match. When (the
1991; Rips 1983; but see Oaksford & Chater 1992a). S&A note - anthiguitv is removed, matching bias disappears. Oaksfo(rd anid
from psychological considerations - that humians must continu- Stenninig (1992) suggeest that type restrictions onl a predicate's
ously compute rapid systematic inferences over very large arguments constrain the c ontrast-classes identified by a neg"ated
knowledge bases, but the%, also note - fromt complutational constituent. For examiple, "li (Ic di not travel to Manchester by
considerations - that these inferences mnust be ofa limited kind train" (italics =rising intonation), idlentifies mnode~s oftranspo,-t
and capacity. Human reasoning springs, in their model, not as the appropriate -ont(rast -class because the( ternary piredicate
from general-purpose deductive machineries hut( from the nato- travels has the following associated type rest rictions: trarves
ral dynamics of interacting neural represen tat ions. S&A's ap- (traveller:,x; destination: y; mode of transport: z). ITyping is of
proach makes an ap)propriate rejoinder to Fodor anid Pylvshvn's course not unique to S&A's proposal, but we feel that their
(19881)) recent criticisms of connection isnti (Chater & Oaksford approach is more likely to generate constrained, tractable tvp-
1990). They have shown that - within the nonlogicist Al tradi- ing mechanisms (perhtaps explicitly invoking the notion' of
tions of connection ism, parallel marker-passing architectures con trast -class).
(Fahlmnan 1979; 1981; H-endler 1987), anid computational neuro- Fourth, S&A dlivide human reasoning into twvo kinds: Reflex-
science (Churebland et a]. 1989) - a p~roduictive synthesis of ive reasoning is rapid, unconscious, and undlerpins onl-line
p~sychological, comnputat ional, anid neurolbiological evidence can prediction anid explanation of thc wvorld, anaphor resolution,
he brought to h~ear on the central cognitive problem of text elaboration, arid so onl. Reflective reasoning is conscious,
reasoning. anid involves external memory aids (pencil and pa-e r) anid

In this commentary, we briefly explore the potential of S&A's external rep~resentational systems (diagrams, pictures, miathe-
model to illuminate issues in the psychology of reasoning. matics, logic, etc.). Other connectionist researchers interested

First, by emphasising the need for computationally tractable in reasoning (Ruinelhart 1989; Rumnelhart et a]. 1986) have
accounts oflihuman inference, S&A identify an important source advocated this essentially V7 gotskyan distinction that logical
ofconstraint on psychological models (Oaksford & Chater 1992a; reasoning is a function of the internalisation of external repre-
19921)). In cognitive psychology, theories of reasoning have sentational sys tems. [See also Hanson & Burr: "What Connec-
concentrated on empirical adequacy. Constrained laboratory tionist Models Learn" BBS 13(3) 1990.] This division leaves
tasks involving at most twvo or three premises provide the data traditional reasoning theories such as mental logics anid mental
that these theories attemplt to explain (see, e.g., Evans 1982; modelsowithout a natural problematic. Those theories seem] Fro-
1989; Johnson-Laird & Byrne 1991). Ultimately, however, psy- tivated by requirements and notations from exp~licit deductive
chological theories must generalise to real human reasoning that reasoning and are then generalised to reflexive modes of infer-
may implicate the whole of a person'F world knowledge in an ence (see, e.g., l'~hnson-Laird 1983). In our view this is mis-
inference (Fodor 1983). Current reasoning theories, however, guided: Peophl: are reflexive reasoners first; the mechanisms of
invoke p~rocesses that, when gencralised to large knowAledge- reflexive reasoning are coofpted to performi deductive inference.
bases, are coinputat ionallv intractable (Oaksford & Cliater Unsurprisingly, people are not particularly good at the latter.
1992a; 19921)). Even if they fully -account" for thle empirical Two aspects of our recent work support this position. First,
data, they could not ble psychologically real. S&A place the tasks in which deductive performance is poor do not allow
emphasis in just the right place: Realistic theories of human subjects to use external aids like pencil arid paper. If such
reasoning must not only be tractable, but tractable using biolog- reasoning requires external aids, then thle simple expedient of
ical hardware. [See also Tsotses: "Analyzing Vision at the Coin- providing them should improve performance. InI somet p)ilot
plexity Level" BBS 13(3) 1990.1 work we surppliedI subjects with pencil anid paper tin an abstract

Second, S&A's model appears to generalise naturally to every- version of \Vason's (1966) selection task arid gave therii one
day, defeasible inference. The deductive inferences typically minute to solve it. Solution rates were at around 60% cominparedl
investigated by reasoning researchers are computationally in- to only aroundit 4% in the standard task. Second, Oaksford anid
tractable by symbolic means, but t'v'rytlay (l(feasilble inference Chater (in p~ress) have argued that performniice onl a v'ariety oif
is worse: The application ofa single rule i's intractable (McDer- conditional reasoning t-.ks can be explained b% the reflexive use
mott 1986; Oaksford & Chater 1991). Recent claims that at least oif a predict-and-exptAiin strategy of the kind that S&A imiple-
one extant theory oifdeduction - mental models (Johnson-Laird ien'it iii their modetl.
& Byrne 1 991; see also BBS multiple boo0k review of Johnson- Finally. S&A's model oif reasoning is at the right level to
Laird & Byrne's Deduction. BBS 16(2) 1993) - generalises to contact riciuropsychological investigations of frontal lobe foull(-
'('count for t'vtrydav reason ing fournde'rs oiii a p~roblel'im for which tioni. Net i ropsvchological c% ilcnic(' conbst rairis inan s oflier a reas
S&A p~roivideo a nat ura sold5ut ion (( liater & ()aksford I 99:3; ofcogiiit iv iniquiry hurt not humian reason inrg. liis is 1r, )ao is
Oaksford 1993). Thel( plarisiblle liut tlefo'as ileo conclursion,. from A because the i implairmni(rt (ifblipot hosi s t'st iniiz Nl i Ii mr 1963) arnd
tu rned thle key (fif 01v ar and it has riot started.** is. '7lic ignit ion plannini g ) Shal lice 1982) pe(rfo(rmianlce(areas al 'o inivestiiztot ed lb\

is farmltv. ' Buit whyv is Iris deofauli t cionmcluir5(on to bei preferredo to, r('aso nimg researcebers) tin froniital lob i ndia c a is well kmio s
"The( cnigi ne has been re'moi ve d i lvi' might ?'Ilio. lack of' ani ISce' also BBS mult ipile booik reviews of' sI fi he*s Fr lom elo
arnswe r iii rre'ntal mo~ de'ls liii r\ siugge st s t hat thlet ro al prioblem'rs ;rsm/c/olo-,y to M~enital St rrwto rv' B B S 116~ 1991.-1 \\(' I o"e
oil tl(f('iisibll rA'asoniiri ir ;itl('l' rrapjireciato'i (( hiti'i be logrur tom list' standa~rdh rr'solniirm taisks wit Ii tfionrti )a r

)Ok',fOrd 1993, Camil'i~inI 1993. t )ksbuid 1993). S&A slrwlo\%s ( )aksforld it ail. 19921)). pativnits wkith l'Iorkill'.oll ohis,'.u, 'I Ma
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Conanentar-j/Shastri & Ajjanagadde: Association to reasoning

loch et al. 1992), and patients with closed he-ad injuries the variable and the constant bound to it, and (2) propagating
(Oaksford et al. 1992a), with some interesting results. It may be bindings by linking the neuron representing variable occur- _
possible to perform computational "lesion" experiments on rence x' in the antecedent to the neuron representing variable
S&Ks model to see whether qualitatively similar behaviour occurrence x" in the consequent in such a way that ifr' fires in a
results. Two factors make S&A's model of particular significance particular phase at time t, then x" will fire in that same phase at
here. First, it is sufficiently well specified to be implemented time t + d(t). This mechanism searches through the set of
and to make explicit predictions. This contrasts with the implications in parallel and the time required to infer a particu-
Norman-Shallice (1985) model. Second, S&A's reasoning archi- lar conclusion is independent of the size of that set.
tecture makes contact with "the rest of" cognition. Computa- The synchronicity hypothesis generates two novel psycho-
tional models of frontal lobe function such as Dehaene and logical ideas. First, S&A explain the limit on working memory
Changeux's (1991), while using biologically motivated building capacity as a consequence of the number of temporal phases the
blocks, use architectures that are tied to specific tasks. brain can keel) distinct, the best attempt so far to ground this

The range of implications of theory or model is one guide to its well-known cognitive limitation in neural mechanisms. The
potential for influence. We believe that S&A have provided a novel idea is embedded in the implication that although there is
technical approach rich in experimental possibilities. This is not a limit to the number of entities that can be considered simul-
to say that it has solved everything; there are several issues S&A taneously, there is no limit on the number of predicates that can
have not tackled: They may make too much of functionally be asserted about those entities. It is not entirely clear how to
questionable neurophysiological results; indeed the "neuro- distinguish between entities and predicates, but this hypothesis
biological" plausibility of their scheme is conceptual rather than might nevertheless bring some clarity to the literature on
factual. Their solution to the variable-binding problem works working memory capacity limitations.
only for essentially localist representational schemes (or localist Second, the synchronicity mechanism implies that the brain
views of distributed schemes). Seen as an ingenious use of the spreads variable bindings, rather than activation, through long-
time domain to implement marker-passing, their proposal is of term memory. S&A add the plausible assumption that the
course no more (or less!) powerful in itself. Although S&A binding information is attenuated with each propagation step;
address the intractability of reasoning over very large data bases, eventually it becomes too fuzzy to support further inferences.
other computational problems well known in Al knowledge Intuitively, this idea differs substantially both from the notion of
representation remain to be resolved in detail (e.g., the frame spreading activation (where activation is a content-free quantity)
problem may reappear in the appropriate specification of typing and from the notion of gradual decay of working memory
categories). Finally, it is not clear how the rest of a cognitive elements, but formal analyses are needed to verify that these
architecture can "know" (or "learn") how to interact effectively three mechanisms generate different predictions.
with the particular nodes and oscillations of one of S&A's S&A also propose a limit on the number ofpredicate instantia-
inference architectures. Despite such objections, S&A's model tions that can be active simultaneously and a constraint on the
introduces important new constraints, and a useful expressive syntactic form of inference rules used in backward chaining.
vocabulary, to the psychology of reasoning. These two proposals, however, are not derived from the hypoth-

This is definitely a step in the right direction on the road to a esized neural mechanism. Both are identified at the symbolic
computationally and biologically, as well as psychologically, level and motivated with traditional complexity arguments.
constrained theory of human reasoning. The least comiprehensible aspect of the synchronicity hypoth-

esis is that it encodes variable bindings in a relation which is not
accessible from inside the brain itself. That neural cluster A is
firing in synchrony with neural cluster B is detectable by an
outside observer, but S&A deny there is any module in the brainPsychological implications of the that can detect this fact. This takes getting used to. How can a

synchronicity hypothesis relation which cannot be accessed from inside the system affect

further processing? How are the conclusions derived by the
Stellan Ohlsson proposed mechanism made available to other cognitive pro-
Learning Research and Development Center, University of Pittsburgh, cesses, for example, planning or decision making?
Pittsburgh, PA 15260 The proposed mechanism is less integrated into psychological
Electronic mail: stellan(ai vms.cis.pitt.edu theory than one might have wished. Even as they' appeal to

Unlike researchers who try to prove that symbolic descriptions behavioral data to support their case, the authors deny that the
of human cognition should be replaced by descriptions of neural dynamic storage they are describing can be identified with the
mechanism, Shastri & Ajjanagadde (S&A) are engaged in the working memory studied by psychologists. In order to tell their
scientifically more fruitful enterprise of relating the two levels of story, S&A have to introduce what they call an overt short-term
description to each other. The particular computation analyzed memory, ams intermediate memory, and an attentional spotlight.
in their article is forward inference, for example, to infer the No neural mechanisms are supplied for these components and
proposition own(Mary, Bookl) from the implication give(x, y, z) the relations between them and the synchronicity mechanism
--- own1(y, z) and the fact give(John, Mary, Book)). At the are left unspecified. Finally, the distinction between reflexive
symbolic level, such inferences consist of two computations. and reflective reasoning, although solidly grounded in behav-
First, a match predicate is applied to verify that the given fact ioral data, comes with some unresolved conceptual questions:
instantiates the antecedent of the implication; the output is Why are there two reasoning mechanisms? Under what circuin-
the set of variable bindings that make the match true: stances is one or the other mechanism applied? If reflexive
Match[ give(Joh n., Maryt, Book)), giwe(x, y, z)] = (x/John, reasoning is so efficient, why do people ever resort to reflective
y/Mary, z/Booki ). Second, the bindings are used to substitute reasoning?
constants for variables in the consequent: Substit ute/x/John. In thc i nl(, the synchronicity hypothesis may or mlay not win
y/Mary, z/Bookl / fnvn(y. z)/ = omcn(Mary, Book] ). 'Tlhe match over alternative hypotheses in the race to account for neuropsv-
and snubstitut i)rocd'ur's constitute a mechanism for identify- chological dlatai. The deeper significan'ce of S&A's article is that it
ing and propagating variable binidings. shows that cognitive' science is relady to set aside the fruitless

The s.nchrinicity hvypothe.sis proposned by A&S claiimus that debate over whether the mind should he dbe escribed at the level
tIhe brain perl•orms tilm, miatch and substitute comlntations by (I) of ieural mIt.hamIisims or at thl level of symbolic computations
('icoditg variab]i' biidin,,s through tll(' snc('hrooiios firing of amid to begin the difficult blt important task of specilying how
114m11r,)11 (Or hmslu.'rs o1 uuu,'or s) which re)ur.'es'nt, rt-p'c)'(ti('flN. (he braiin (arrii'' out tbl mnimd's 'omumul)ul]tltions.
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Making reasoning more reasonable: long-term memory. Thus the target article does not address the
problem of what to store and what to infer, which is fundamentalEvent-coherence and assemblies for the organization of large data bases as well as for the
understanding of human long-term niemory.

Unther Palm IDespite these obvious problems, most of which are not
Depoarlment of NOural Intomnation Processing, Univemy of LIAm, W-7900 specific for the idea presented in the target article, S&A illus-
Wtti, Germany trate quite convincingly how synchrony can be used for dynamic
E•l•onic mall: paim(aneuro.intomialik.uni-ulm.de binding. Toward the end of their paper, however, when it comes

Coherence in neural activity can be useful to bind a neural down to the technical problems (sects. 5 & 6), the nice idea gets
representation together. This is an old idea (Hebb 1949). but still marred with a number of strange and clumsy constructions, in
a convincing one. This idea has been elaborated again in recent particular the "up/down switches" and the "predicate banks. 1
c'~eriniental and theoretical litei,,ure concerned with the wonder whether one could perhaps get along without these
visual areas of the cortex (experimental papers are cited in the constructions.
target article; for a discussion of some theoretical issues see Predicate banks. I think the idea of an IS-A hierarchy should
Johannesma et al. 1986; von der Malsburg 1986; and Palm 1986). lx' extended to the predicates: There is a general -give" and
It has turned out that the neural networks in these areas can under it there is a special "give" representing 'John gave Book I
produce (and make use of?) coherence on a fine temporal scale to Mary." Systematic relationships as in Figure 6 should lbe
(msec) in addition to a coarser correlation of activity in the range represented between general predicates ("give," "buy," "own,"
of tens to hundreds of milliseconds. The former has been called etc.) and not between their sp'cial instantiations as in Figure 12.
"event-coherence,'" the latter "rate-coherence." The new idea The reason for this is simply that the connections between
was that event-coherence could be used to bind the parts (such "give," "own," and so on should be implemented only once
as edges and corners) of different objects together while rate- (between general predicates) and not between all the different
coherence would simply indicate that these different objects instances of "give," "own," "buy," that may be represented as
were presented at the same time in one scene. long-term facts. Thus Figure 12 should contain a general "own"

Shastri & Ajjanagadde's (S&A's) target article transports this ellipse between "can sell" and "own" and a general "give" ellipse
idea from the representation of visual scenes to the representa- between "own" and "give." Furthermore, the connecting paths
tion of knowledge in expert systems: Concept nodes are broadly should be from "can sell" (which is general) via general "own" to
activated to represent the presenec of concepts, whereas event- particular "own," and from general "own" via general "give" to
coherence is used to hind concepts to roles in predicates. In particular "give. " This would not change the arguments given in
other words, the essential idea is to use fine timing or event- S&A's paper, it would only increase the length of the shortest
coherence for variable binding, path by two steps. Using this kind of IS-A hierarchy also for the

This is a very appealing idea and it is illustrated quite convinc- predicates would be a simple alternative to S&A's introduction
ingly in Figures I to 13. The idea of combining this system with of "predicate banks."
an IS-A hierarchy is also convincing and indeed very usefil if not Up/down switches. I think these switches can also be replaced
even necessary for any real application of this system. by a more plausible and perhaps simpler mechanism if one uses

Only the representation of so-called long-term facts in terms a distributed representation of the concepts in terms of Hebbian
of presynaptic inhibition of inhibitory synapses seems slightly cell assemblies (Hebb 1949; Palm 1982; 1990) instead of single
awkward and implausible from a neuroscientist's point of view. nodes. In this framework it is conceivable to represent ain IS-A
One wonders whether the same cannot be achieved by detec- hierarchy (ofconcepts or predicates)in terms ofset-containment
ting fine coincidence through excitatory synapses. Another of the corresponding assemblies (sets of nerve cells).
problem with the representation of long-term facts is the learn- For definiteness let us assume concepts that are higher in the
ing of these facts. During learning these presynaptic inhibitions hierarchy are represented as smaller assemblies. Then upward
must be formed somehow, so that axons from cells representing inference could be performed by raising the average threshold
"Mary," for instance, have to find their way to the right terminals of neurons in the network (Palm 1982), thus forcing the repre-
connecting the right predicate argument or role ("recipient") to sentation to become sparser. Conversely, do(vuwvard inference
that instantiation of the "give" predicate that was chosen to could be performed by lowering the threshold. Furthermore,
represent the particular fact that "John gave BookI to Mary." the use of cell assemblies for the representation of concepts

Furthermore, one consequence of this fact is that John does makes it possible to represent similarity between concepts ill
not own the book any more, so there should be a way of the degree of overlap between the corresponding assemblies.
disconnecting the corresponding inhibitory synapse in the par- Another improvement of the proposed inference system
ticular "Own" predicate that says that "John owns Bookl." The could be the use of more than only' binary logical values for the
problem is actually even worse, since simple disconnection does certainty of propositions. One could represent the certainty or
not rule out eventually concluding that "John owns Bookl" from confidence for a proposition by mneans of the rate of firing of the
other facts. So the question remains: How does the inference corresponding unit. This is a little problemnatic with the model
system deal with negative evidence? proposed in the target article, because it uses phase-coherence

Another problem with the predicate "give" is that "John gave with respect to a fixed frequency to represent binding. The
Book I to Mary%" but later Mary may give Booki back to John. more general idea to use event-coherence (vs. rat(' coherence),
After that, who owns Bookl according to the inference system? as mentioned in the beginning, does not have this problem.
Probably both Mary and John. How can the system be pre- Thus a number of technical problems can perhaps be solved
vented from drawing both conclusions? I believe it would be and the representational scheime improved considerahly by
much more reasoabhle to store as long-term facts not the using cell assemblies instead of single units for the represeu-
propositions abut it "giving" but rather the resmi Iting propositions tation of 'oncepts and event-( hl'eren'e instead of phasc-
about ownership. Thus some ofthe inferences should act ially be coherenct' for the representation o'bindimis. These ideas would
drauv+' before storage and then stored as long-term facts. l16i- ofcoirse have to be worked on t miore accirately, hut I1 belil'\y
dentally, the use of the terni long-tenn.fact is also a bit mislead- thev could help to make the proposed s\stem more aimtenable to
ing, because it apparently need not mean a fac.t in long-terni neiirobiological the>orizinog Mid perhaps e\Ven Illol'e iiS'l4u ill
Il'mueor\ bhot rather a fact that is nv'imiorized during the aippire- practi('e.
li('nsioli ilfa shout story, The =infret'nce svste i presente(d here is I also 101lld thu' targe't articlh' '%.r\ Is<ttI iii tliigI''ril
c'1arlv .rlinlt'Id t(lowaird answerin• qiueries ailoil short stlric' htsthtollIlt lill the plum tic3 1se. 1011 'X\'nlt-oltle'rclicc' - plrhap,

lather h as ill <v\'c' ill thet, \iisllA;l Ntd s
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Useful ideas for exploiting time to engineer stants and variables (Dolan & Smolensky 1989). Unfortunately,
these methods require (a log CXa log V) nodes to represent
bindings among C constants and V variables. C and V refer to a/l
constants and variables, not just those used in an episode of

Richard Rohwer reasoning. It seems feasible, however, to distribute the tensor
Department o! Computer Science & Applied Mathematics, Aston product over time, using a mixture of the tensor product binding
LtNiveaiy, Birmingham 84 ?E, England and phase binding approaches (Rohwssr 1993). This offers the
Ejectronic mail: rohwern(acs.aston.ac.uk combined advantages of each system. The total number of nodes

Shastri & Ajjanagadde (S&A) have found ap interesting way to required to represent the constants and variables is reduced
exploit the representational potential of time in neural network from the grandmother-cell system's O(C + V) to O(log C + log
models. In most "neural software engineering," a correspon- V). No extra nodes are needed to represent the tensor product,
dence is defined between some of the state vectors of the model but some extra time steps are needed, as many as there are
and interpretations in an application domain. The representa- bindings in the episode of reasoning. In addition to providing
tional power of a state is limited by its dimension; for example, a increased efficiency, the distributed representations might give
network of N binary-valued nodes can represent at most 2 N such a system interesting generalisation properties found in the
different things. But without allocating any further hardware more popular neural network models.
resources, that representational power can be increased to 2NT

by interpreting length-T temporal sequences of states instead of
individual states. It is a space-time trade-off: It takes T times
longer to represent something this way, but 2T times as many
things are representable. Do simple associations lead to systematic

S&A have found a situation in which this trade-off is an reasoning?
impressively good deal. It is important to have the power to
represent a great variety of variable bindings but most will never Steven Sloman
actually get represented in practice, and most of those that do Department of Cognitive & Linguistic Sciences, Brown University,
will not need to be represented for very long. Hence, it is better Providence, RI 02912
to spend some time rebuilding the representational setting each Electronic mail: sioman(acog.brown.edu
time a binding needs to be represented than to keep lots of spare This is an interesting model that is consistent with several
representational capacity on tap. common intuitions about human reasoning. The image of paral-

The space-time trade-off in this system is partly illusory, lel chains of inference unfolding and refining themselves over
because its dynamics is order T - 1 in the state variables, where time with related elements bound together through phase
T is the number of phases in a fundamental period. This is synchrony is appealing. Despite a widely shared belief that
because maintenance of synchrony requires connections with many of car mental representations have an intrinsically se-
time-delay T - 1 between the p-btu nodes representing corre- quential character (e.g., our memory for music), few models
sponding parts of rule-related predicates. Consequently, so far have succeeded so well in using time as a representational
as the dynamics is concerned, a "state" has N(T - 1) compo- device. Unfortunately, the model is devoid of empirical support.
nents. Whether temporal synchrony is implemented with It is so rich in assumptions and detail that vast quantities of
simple delay lines or the elaborate mechanism in S&A's section confirming data would be required for it to merit serious
7.3, a buffer of size N(T - 1) has to be directly or indirectly consideration. And the little that is known about human meas~mi-
implemented for the system to run. These extra degrees of ing makes such data unlikely.
freedom can bethoughtofas implemented at a subcellular level. The chief source of evidence appealed to by Shastri & Aj-
Computer simulations have to dedicate memory to them. janagadde (S&A) is neurophysiological. They argue vehemently

Although temporal coincidence plays a key role in this sys- for the model's "neural plausibility." But the data they depend
tern, the oscillations seem inessential to its operation. What on for this vague claim are disconnected from the domain they
matters is that fact predicates "observe" whether their argu- are modeling. The strongest evidence they muster is a sugges-
ments fire synchronously with any constants at least once during tion that "the dynamic binding of visual features pertaining to a
a reasoning episode, and that variables linked by rules eventu- single object may be realized ly the synchronous activity of cells
ally fire at the same time as any constant to which they may be encoding these features" in tile cat visual cortex. (sect. 7.1.1).
bound. Periodic reiteration of these coincidences seems a waste Even if we accept this e. idence at face value, does it tell us
of time. The only important role of the oscillations is in keeping anything at all about how people reason? The binding of object
variables linked by rules synchronised with each other. That features may depend on temporal synchrony, but the model
way a constant synchronised with one is synchronised with all. posits a particular parametrized temporal synchronization pro-
The synchronisation among rule-related variables would be cess that binds the arguments of abstract predicates to their
maintained by instantaneous propagation of activations, if only fillers and instantiates the processing of abstract chains of infer-
that were possible. Instead, it is achieved (eventually) by delay- ence. The data are so far removed fromn the domain of studv that
ing propagation for nearly one basic oscillation period, or by even S&A admit that the only relation is analogical. WbVether or
more elaborate mechanisms that require at least one cycle to not the brain makes use of temporal synchrony in object percep-
take effect. Perhaps there is a cheaper way. tion has no bearing on how we reason abstraetli; especially

This system's elegant distribution of representations over because we can guess only roughly at what either of the underly-
time is not matched by an elegant distribution of representations ing psychological processes are. S&A lift a rich and promising
ov('r nodies. Gmranmdnother-cell (or cell cluster) representations metaphor (binding through temporal synchrony) to the status of
ofconstants and variables are used throughout. This may he just scientific evidence. This could be more easily ignored if it were
as well for expository iprpol)nse's, but greater efficiency and not so basic to their argument.
pot'untially interesting properti's may arise from mnmore filly S&A also report evidence suggesting that their model allows
distributed r'•pr's'ntations. A set of C constants. for example, them to predict working neninory capacity. But manyv more
can be rel)r's'ntd 'as patterns (listribnuted over ()(log C) nodes. finrnl groundued theories alread\v accoun n t hr working memory
(A sparse'r r'pr-t,seutation usi ug a log C 'nodes, with a > I but data (e g.. Baddelev 1986().

v',,'th'lss ' k o I'-, C (7 C, Inight lae more useful properties.)
Sninhncuukx. I )doun. uiad otlhu'r's hIave d(l,\lpcd "te'usor irodnuct"
hiuuluui uu't-d iods tfial is'. dishtilbit'd iip'riusci' taitiui s of' con-
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A model of human reasoning should presumably have, first support to buttress the model, the target article leaves us with
and foremost, implications for human reasoning. Accordingly, little other than a potentially promising metaphor to descrilbe
S&A make a few relevant predictions (sect. 8.2.6) but support- human reasoning. But because the mind is so good at generating
ing data or even suggestive examples are not provided. Some of metaphors, a new metaphor is not something the study of the
the model's predictions seem rather arbitrary and therefore mind really needs.
unlikely to be confirmed, especially those having to do with
restrictions on when variables can appear in the antecedent or
consequent of a rule. Other predictions are just misguided. For
example, the model predicts that people can make transitive
inferences using only a small number of relations, but exam- hase logic Is biologically relevant logic
pies of transitive inference that pose no difficulty for people Gar W. Strong
can be constructed easily, even from esoteric relations. Consid-
er the transitive sequence Pirnplier(teenager,, teenager.) & College ol Information Studies, Drexel Universty, Pttladelphia, PA 19104

Pirnplier(teenager2, teenager..) & . . . & Pimplier(teenager,, , lectronic mall: t (gduvm.ocs.drexoLedu
teenager,). The inference Pimplier(teenager, teenager,,) can be The target article by Shastri & Ajjanagadde (S&A) presents an
drawn effortlessly (even reflexively). People are terrific at con- exciting new model of binding-dependent logic (phase logic)
structing linear orderings when the context clearly calls for one. that is consistent with some very basic human information-

The model's problems begin with its failure to capture aspects processing limitations. Their interpretation of Miller's Iwagic
ofpeople's fallibility that much simplerconnectionist models are number 7±2 (sect. 8.2.3) in terms of binding limitations of a
able to capture easily. For example, people do not always synchronous oscillatory system provides a ground-breaking link
respect the logical principle of category inclusion. To illustrate, between this well-known limitation of human cognition and
when evaluating the strength of an argument of the form underlying neural architecture. In addition, S&A have clarified,
"premise statement, therefore conclusion statement," people if their model holds up, the well-known paradox of why it is so
often fail to take inclusion relations between premise and con- difficult for novices to become experts upon being presented
clusion objects into account. For example, they fail to judge an with rules derived from expert behavior. Until rules become
argument such as "Animals use norepinephrine as a neuro- part of the long-term knowledge base (LTKB), they must be
transmitter, therefore reptiles do" as perfectly strong. In fact, on processed reflectively rather than reflexively, and, in order for
average they judge it substantially weaker than the argument them to become part of the LTKB, the rules must have been
"Animals use norepinephrine as a neurotransmitter, therefore relevant in a number of cases (sect. 8.5). Overall, S&A's phase
mammals do." A connectionist network much simpler than the logic model offers an intriguing alternative to traditional Al
one described in the target article provides a straightforward approaches such as symbol rewrite systems, showing how bio-
account of this finding (Sloman 1993). People seem (in their logically relevant models can exhibit a systematic correspon-
reflexive state) to reason less in accordance with many of the dence between arguments of first-order predicates and the
rules of logic or IS-A hierarchies than they do with heuristics appropriateness of argument correspondence in terms of class
that depend on similarity, metaphor, and the surface structure of membership. It is a shame that S&A did not report the simula-
statements (see, e.g., Klayman & Ha 1987; Lakoff 1987; Wason tion results they mention in section 10, because they could have
1960). been more convincing in their arguments, having shown how

Examples of people's tendency to rely on similarity over logic they dealt with the details of instantiating their model while
are found in demonstrations of violations of the conjunction rule preserving biological realism.
of probability. The conjunction rule states that because the A small criticism I have of the target article concerns the way
extension of the conjunction of events A&B necessarily includes S&A interpret the logic circuit of their fact encoder. Their
the event B, P(B) Ž- P(A&B). This rule is violated in that, for circuit for encoding give(John, Susan, x) will not recognize
example, people who are given a description of a man who is give(John, Susan, Car7). Their interpretation of give(John,
intelligent, unimaginative, compulsive, and generally lifeless Susan, x) is "John gave Susan something," which is inconsistent
are more likely to infer that he is an accountant who plays jazz for with the closed world assumption (CWA) the authors assume in
"a hobby (A&B) than they are to infer that he simply plays jazz for section 4.4. The CWA requires that a "don't know" answer be
"a hobby (B), apparently because the description is more repre- viewed as a no answer and it implies a failure to recognize
sentative of A&B than it is of B alone (Tversky & Kahneman give(John, Susan, Car7). A proper circuit for encoding the fact
1983). The point is not that an account of these particular "John gave Susan something" is not the one S&A illustrate but
phenomena could not be generated using the representational one that makes use of their IS-A hierarchy by connecting an
scheme of the model described in the target article, but rather abstract object to the r-and node as an inhibitor of the g-obj line.
that the model gives us no a priori reason to expect these basic A description of such an implementation would clarify their
characteristics of human reasoning. The model serves as an interpretation of unbound arguments in phase logic.
existence proof that a network of nodes and links can use I have a more substantial criticism of S&A's claim that nodes
temporal synchrony to traverse an inferential dependency cannot bind with more than one entity at the same time. For
graph. But many interesting qualities of human reasoning are example, in section 4.8 they claim that the node Animal cannot
not explained by such a graph. fire in synchrony with both Tweety and Sylvester at the same

To argue that such systematic errors are the result of the time. In a periodic phase logical system this may be a reasonable
intrusion of reflective processes on a reflexive process that is claim but there is no reason to require that phases be periodic.
otherwise logical is just the opposite of what we should expect This unnecessary claim led S&A (in sect. 5.2) to what I believe is
from psycho-logic. Let us hope we can put more faith in an implausible architectural feature, that of concept clusters.
conclusions we come to upon reflection, on the assumption that each with k, banks of p-btu nodes, where k, is the multiple
our quicker, dirtier reflexive thinking will sometimes be wrong, instantiation constant and refers to the number of dynamic

One common approach taken to at least motivate the empiri- instantiations a concept can accommodate. The Strong and
cal validity of an elaborate model that rests on many assumptions Whitehead (1989) simulation, to which S&A refer, showed that,
is to show that it is able to account fior some interesting set of with an appropriate architecture of spiking neurons such mmilti-
data. The model would be much more convincing if S&A ple bindings are possible. Our simulation de'ionstratcd (.schc
showed that it could in some sense comprehend the Little Red activity in overlapping subsets ofniiinieolumnns (Strong & \Vhitc-
Riding flood story with which they begin their dise',ssion, or head 1989. . 396). The architecture we used ilhdh's, a% basic
mi',m some simple'r stiory. Without e''ven this k id of emipirical processinmg units, mu inicolhmimis thait ContaiMiui W1 .sCmhh" de O
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ComnientarylShastri & Ajjanagadde: Association to reasoning

neurons that share inputs. Such sharing also allows the ensem- Temporal synchrony and the speed of visual
ble to achieve independence from absolute refractory periods of processing
individual neurons as well as from -noisy propagation delays."
The latter is an implementation problem recognized by S&A
(sect. 7.3) and handled through group averaging within Simon J. Thorpe

ensembles. Institut des Neurosciences, Depart Nourosciences do Ia Visiw.
The use of mutually inhibitory minicolumns as basic process- Univetrsd Pierre & Mane Cune. 75005 Pans. France

ing units caused the Strong and Whitehead (1989) simulation to Eblctionic mall: thoipe(accr.jusseu.fr

exhibit a behavior that obviates another biologically implausible Shastri & Ajjanagadde (S&A) have provided a remarkable exam-
requirement that S&A claim is necessary for their model: pie of how ideas in cognitive science can converge. When I first
Entities used in argument bindings must have specific delays heard Lokendra Shastri describe his work with \enkat Aj-
associated with them (sect. 4.3) to produce a phase separation janagadde on using temporal synchrony to tackle the dynamic-
between different entities. Whereas a central control (such as binding problem in 1989, they were approaching the lproblem as
the hippocamnpus) might play a role in separating entities (as computer scientists. At about the same time, the work on
suggested by Eichenbaum et al. 1989), S&A have ruled this out. oscillatory activity in the visual cortex was beginning to cause
Strong and Whitehead's simulation demonstrated that entity quite a stir in the neuroscience community (Eckhorn et al. 1988.
separation can be achieved, in any case, without central control Gray et al. 1989), but at that point these two different ap-
and without concept clusters, etxi with overlapp)ing node sets. proaches; appeared quite separate. In the spring of 1990, how-
This can be seen in our simulation output, where the boundaries ever, a meeting on temporal coding in Paris provided an oppor-
between phases are fairly sharply defined (see Figure 1, which tunity for interdisciplinary discussion and the cross-fertilization
shows a more recent sample of our simulation output). of ideas. Clearly, S&A have taken the interdisciplinary challenge

In sum, S&A's model is a very important contribution to the seriously and have worked hard to make their model consistent
field of cognitive science in helping to bridge the logic-based with neurophysiological and psychological data.
approaches of traditional Al and biologically relevant models of I have some more specific points. S&A devote nearly all of
human cognition. They have constructed this bridge with a their target article to an analysis of language understanding with
model whose architecture explains some very basic limitations an appeal for experimental data to test their ideas (sect. 8.2).
on human information processing. With a bit more attention to Although psychological data on language comprehension are
the details ofactual neural processing units, however, the power available, it will probably be quite difficult to test the neuro-
of their model may be substantially improved. I suspect that physiological plausibility of such a model in this domain, be-
they encountered this need in the simulations they indicate they cause so little is known about the neuronal activity during
conducted. language understanding (though see, e.g., Creutzfeldt et al.

1989). S&A do mention (sect. 2.5), however, that similar prob-
lems ofdynamic binding arise in vision. Indeed, the connection-

Sist model recently developed by Hummel and Biederman (1992)
Salso uses an approach based on synchrony of activation to tackle

the problem of binding elements during shape recognition. Can
detailed knowledge about visual system function be used to test
the feasibility of S&A's model of language understanding?

-- . .A few years ago we pointed out the serious computational
- ,,,,___ _ problems posed by thie remarkable rapidity with which the

,.__,,_ -visual system can process images (Thorpe & Imbert 1989). We
argued that processing was so rapid that a great deal of process-
ing must he possible on the basis of only one or at most two

---- -- - spikes per neuron. The argument was as follows. There have
. - .been a number of reports of neurons in the monkey temporal

-... ....... lobe with responses selective for complex visual stimuli such as
... - .. ,faces. One of the most remarkable features of such neurons is

- j ~ ! ~ ~that they typically respond only I1M to 140 msec after stimulus
presentation. On the basis of anatomical studies it would appear

- ------- - - - that such neurons are at least 10 synapses away from the
photoreceptors of the retina (information has to go through

2-- -LGN, VI, V2, and V4 en route), which implies that each
2111111 "-.processing stage has only approximately 10 msec before the

..... ,,., ~information has to be forwarded to the next layer. Since the
...... firing rates of eortical neurons rarely exceed 100 to 200 spikes

S**per second, this means that even if visual processing involves
essentially feed-forward processing, much must be achieved on
the basis ofonly I or 2 spikes per neuron.

Figure 1 (Strong). "Three staffs" ofsimulation output d(ringa "File strength of this argument has been considerably en-
free-running inode ofoperation following the learning of three hanced by sonic recent data of Oramn and Pcrrett (1992), who
overlapping patterns. Each line represents the oulutput of one looked at the time course of the face selectiv it% ofneurons in tilhe

minicolumni. There are three different "phases ofoutput activ- primate temporal lobe and reported that selectivity is f11ll

ity that hind different subsets of iniiicolunmns. and till' transi- present during the first 5 msec of fthe neuronal response even for
tions between the phases are fairly well defin(ed. T'l( bfox necuirons with offset latencies ofless than IMX) nisec. Other data
surrounds the second phase. which has one In inicol [fil in on neurons at earlier stages in the visual svstem fromn our own
coimn with tillh first phase. The phase that follows tilh' box has laboratory also foiid that selectivity was tyv)icallv present right

one lin in coon witht boxed phins,, from the very start of the neuironal response, h th ill thle case of
orientation sclectiv ity (('hlebrini et al. 1993: Thorpe ct all. 1,9,%)
and selectivity to sterreoscopil' disparity (l'uorpe et all. 1991).
Stich daita i lly that im•hrinuationi ip.ocssim : 111,lst be Ni' \1N rapid,
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Oram and Perrett conclude that "the only way to account for the observation that has motivated many proposals over the years,
rapid discrimination is to consider a coding system in which the including NETL. S&A want to identify human reflexive reason-
first spike from multiple sources is used to transmit information ing with a restricted subset of Horn clause logic. But where is
between stages of processing" (p. 70). their evidence in support of this claim? The only shred of

But if processing of even complex stimuli such as faces (can be justification we can find is that they have, lurking in the wings.
achieved on the basis of only one or perhaps two spikes per an elaborate scheme for wiring up an implementation.
neuron, what of S&A's model, in which several cycles of syn- Human reasoning does not seem to have much in common
chronized activity are required to allow reasoning? One re- with the type of inference at the core of the S&A proposal. S&A
sponse would be that although there is clear evidence for a tackle this difficulty in two ways. In sections 1.4 and 9.1 they
hierarchically organized architecture in the case of the visual exclude entire classes of phenomena - analogical reasoning,
system - cells in the temporal lobe are something like 10 episodic memory, imagery, and associative recall by fast set
synapses away from the retina - the same is probably not true for intersection - that would appear to ibe more central to human
the neural structures involved in language understanding. Thus reasoning than strict logical deduction (Lakoff 1987; Lakoff &
while synchronous firing may be difficult to obtain across the Johnson 1980). But in section 5.5 they promise something a little
different hierarchical levels involved in visual processing (at more flexible than modus ponens, namely, soft rules - vaguely
least for the rapid visual processing that leads to the activation of defined and unimplemented - and defeasible inference. We
face-selective neurons in the temporal lobe), this may not be a also note a stab at abduction in Ajjanagadde (1991).
problem for language processing. These crude initial forays into an area far more complex than

It may be that the visual system does not actually need logical deduction are no substitute for a credible theory of
oscillatory activity to establish the sort of grouping-related human informal reasoning, namely, something comparable in
synchrony of firing required by S&A. One of the surprising scope to Collins and Michalski (1989). Thus, the crux of the S&A
results of recent studies of visual response latencies in the visual theory remains a certain restricted, first-order logical language
cortex is the remarkable range of onset latencies found. Under put forth as a language of the brain, with nothing to recommend
the same stimulation conditions, some visual cortical neurons it - as a representational theory - over far more sophisticated
will start firing 40 msec after stimulus onset whereas others have nonconnectionist proposals.
onset latencies of over 100 msec (Celebrini et al. 1993; Thorpe et The second component of S&A's proposal is a supposedly
al. 1989; Vogels & Orban 1991), with most cells starting to fire neurally plausible implementation, a claim that falls apart al-
with latencies between 50 and 70 msec. This range of latencies is most immediately. It is fine to propose synchronous firing as a
sufficiently large to mean that synchrony can be used to group binding mechanism, but this feature cannot serve as the sole
subsets of neurons even in the absence of oscillatory activity. For biological justification for what turns out to be a complicated
example, one set of features could be grouped if the relevant parallel computer architecture.
neurons fired around 50 msec, whereas another set of features As a neural model, the S&A proposal suffers from multiple
could be grouped by having the relevant neurons fire around 60 fatal flaws. It is essentially localist, postulating disjoint neural
msec. As Eckhorn (1991) and others have already pointed out, populations for distinct concepts. Yet it is also highly redundant,
stimulus-induced synchrony may provide an alternative way of requiring multiple copies of any concept that might participate
grouping features without the need for oscillatory activity, in more than one simultaneous relationship. These multiple

In conclusion, the use of stimulus onset induced synchrony in copies are controlled by a switching mechanism whose wiring,
the visual system may allow the operation of a feature-binding in terms of complexity and specificity of connections, is unlike
process similar to the one proposed by Shastri & Ajjanagadde. any neural circuitry described in the literature. We also ques-
The major difference is that it can potentially work even in tion whether a system that requires oscillation with up to ten
feedforward networks and does not require the use of oscillatory separable, stable phases is any more neurally plausible than
activity, a significant advantage given the difficulty that a num- naive "computer in the head" models. Certainly, nothing like
ber of researchers have had in demonstrating oscillatory re- this precise time-keeping has ever been observed in brains.
sponses with static visual stimuli (see, e.g., Tovee & Rolls 1992). We conclude with some remarks on the relation of this work to

the NETL system. We see nothing in S&A's proposal that cannot
be done by NETL, which also exhibited some additional abilities
such as set-intersection. It is a straightforward operation in
NETL to include statements like scared-oftt yx) in the prototype

Should first-order logic be neurally definition for the preys-on(xy) relation, and to inherit the

plausible? former whenever the latter is asserted for specific individuals.
The S&A model can be extended to pass fuzzy quantities rather

David S. Touretzkya and Scott E. Fahlmanb than discrete markers, but so could NETL (Fahinan et al. 1983),
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA NETL had a central controller that told the knowledge repre-
15213-3891 sentation network what to do on a cycle-by-cycl( basis. S&A
Eloctronic malil: last(a cs.cmu.edu; bset(a cs.cmu.edu observe that this is not neurally plausible and claim that a

Part of the attraction of NETL (Fahlman et al. 19K3), but also a significant contribution of their work is to show how such a
source of difficulty. was that it conflated a theory ofrepresenta- svst-ini can run without a central controller. This claim is stated
tion with a parallel computing architecture. The emphasis on repeatedly, but it reminds us of the Wizard of Oz: "'Pay no

parallel implementation discouraged people from looking too attention to the man behind the curtain." We believe that the
closely at the representation ideas. Shastri & Ajjanagadde (S&A) authors have hidden the controller, not eliminated it.
appear intent on repeating this mistake, with claims of neural It is true that the S&A proposal does not require cycle-b\-
plausibility lhrther clouding the issue. Their representation is cycle ('ontrol, Instead of having a controller ste) nmarkers up)-
not very humanlike - but notice how well it fits the compuling ward or downward through the typet hierarchy. S&A cr'ate' two
architectnre. Their architecture is not very brainlike - but look (listinct parallel networks. On(e propagates phiase-based markers
at the complex infrem'nces it sulpports. Unfortunately, when upward frontm a starting point and the other passes mnark'rs
teased apart and critically examined, neither component holds downward. Somne external agency mmuist still sel'ct which of

II) as a ('redil)h proposal about human('a cognition. theste mitworks is to be" adt'iv'. hot onve this has l) do'lleo'. till
LeAt os first considt'r thei rmpresentational compoment, 111h- marker propagat('s as fir as possible ilk the spccified dir('ctiom.

maans can make ce'rtain kinds (of' infmrrences erv rapidly, :III '[lhe authors can ftiirhv claim that th,\ haIla e in'Iinmil ad c ch'-b \-
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cycle control but at the cost of further replication of network noise participates in desynchronization, infinite time is theoret-
hardware and the loss of certain useful operations that require ically needed for desynchronization, since in the case of noise A,
more precise control. is zero.

In any case, there remains a need for some agency to manipu- Thus, we conclude that the cause of the damping is the
late the many control lines, set certain nodes oscillating with the existence of inherent chaotic oscillators. At the moment it is
same phase, query the network via the appropriate e and c lines, difficult to estimate the correct value of the orbital separation of
and so on. In section 10, S&A suggest that this is not done by a the neural oscillations; it seems plausible, however, to estimate"controller" hut rather by the "parser." It appears that the it as the order of one per one cycle of oscillation. Hence, as an
central controller has been eliminated by distributing a few order-estimation, the desynchronization takes 20--25 msec.
minor elements and renaming all the rest. Taking into account a cut-off-frequency of around 100 Hz in the

experiments, the unit time of the observed oscillations should
be 10 msec. Then X is estimated at around 0.5 per unit time,
which is a reasonable value from the viewpoint of dynamical
theory. Thus, the reasoning of S&A must be amended in its

Dynamic-binding theory is not plausible "biological interpretation" of their theory. Actually, our prelimi-
without chaotic oscillation nary numerical simulation of the chaotic model for cortical

neuro-oscillations shows much faster desynchronization than
Ichiro Tsuda the theoretical estimation. In most cases, a time less than one-

pmaiment of Aticisl Intaeligonce, Kyushu Instiaute of Technokogy. kzuka. half cycle of oscillation is required.
Fukuoe 820, Japan The neural (de)synchronization is a more rapid process, so the
Eb Ptiun 'mall: tsuda(•uwnbo.ai.yuth.ac.jp synchronized state cannot be sustained for the few hundred
Dynamic binding of knowledge is one of the essential processes milliseconds supposed by S&A. It is plausible that the neural
for both "reflexive reasoning" and "reflective reasoning" in the synchronization makes rapid judgments by feature detection
human cognitive system. Shastri & Ajjanagadde (S&A) deal with (Gray et al. 1989), or by initiating cognitive processes (Koerner
reflexive reasoning in terms ofconnectionist models of dynamic et al. 1987). Throughout the process of thinking, including
binding. This approach may assure a plausible model of the "reflexive reasoning," a chaotically itinerant motion among "at-
process of dynamic computations. Indeed, S&A propose a tractors" (we call it "chaotic itinerancy") seems much more
reasonable model of reflexive reasoning. To justify the model plausible, one that can generally appear in systems with large
biologically and from the viewpoint of dynamical theory, how- degrees of freedom (Davis 1990; Ikeda et al. 1989; Kaneko 1990;
ever, they refer to the synchronization or phase locking of Tsuda 1991). In such itinerant motions, the system is temporally
periodic oscillations that was observed in the visual cortex of the expressed as a "small" system, where "small" means the partici-
cat (Eckhorn et al. 1988; Gray et al. 1989) and monkey (Kreiter pation of only a few dominant modes accompanied with a
& Singer 1992). This commentary is devoted mainly to the number of inactive modes that could be active at the next period
question: Could synchronized or phase-locked periodic oscilla- of the process. These modes can be activated as a chaotic mode
tions provide a plausible basis for the dynamical model of by a large numberof interactive neurons (Freeman 1987; Skarda
reflexive reasoning? & Freeman 1987). The temporal reduction of the number of

In the Gray et al. (1989) experiments, rapid damping of both active modes must stem from spatial coherency (Freeman 1991),
auto- and cross-correlation functions was found. There are two but not from "phase locking."
possible causes of the damping: One is due to inherent chaos, Related to the above discussions, I would also like to comment
and the other is perturbation by noise. The latter possibility can on the possibility that von der Malsburg's model for the cocktail
be rejected. We see an apparent feature of the observed correla- party effect (von der Malsburg & Schneider 1986) has nothing to
tions, namely, time symmetry of autocorrelations but time do with the neural synchronization observed in the experi-
asymmetry of cross-correlations (see Fig. 1-3 in Gray et al. ments. The cocktail party effect is more dynamic and complex,
1989). When the periodic oscillation is perturbed b) noise, hence its explanation needs such a mechanism of dynamic
cross-correlation between two such oscillators should be sym- information processing that both coherence in space and chaotic
metric in time as well as in autocorrelations because of the itinerancy in time play a role in sustaining memories during a
statistically stationary motion. The assumption of the existence period of a few hundred milliseconds to a few seconds, and in
of chaotic oscillators, however, leads us to a reasonable explana- searching and linking appropriate items in the LTKB (long-term
tion of the distinct feature ofcorrelations that a transient process knowledge base). Here, spatial coherence is necessary for the
accompanied by desynchronization between chaotic oscillators dynamic link of neural activities over wide cortical regions,
brings about time asymmetry of cross-correlations, preserving especially related to auditory processing, short-term memory,
time symmetry of autocorrelations due to inherent stationary and thinking. Chaotic itinerancy creates the dynamic sustaining
chaotic motion. of memories and the processing of meaning, namely, a dynamic

In addition, we examine whether or not desynchronization link of memory items (Tsuda 1991). We have shown that a
can be achieved by noise, since there is still a possibility of the coupled chaotic system and a chaotic neural network, %% L. h can
participation of noise in the transient process, which may give exhibit chaotic itinerancy, sustain any information fed from
rise to asymmetric cross-correlations. Desynchronization is due outside by means of propagating local chaotic activities despite
to a separation of corresponding orbits and the degree of the elementary chaotic process (Matsumoto & Tsuda 1987;
separation can be measured by the degree of orbital instability Tsuda 1992).
indicating an exponential separation of nearby orbits. The In addition, I recommend S&A to the following literature
Lyapunov exponent is the average rate of this separation in unit concerning the roles of neural synchronization. It has been
time. Since desynchronization should start unless all eompo- hypothesized, for example, that synchronization of neural os-
nents of tfli' I'aplinov spectrum are negative, the value of the Cillations may participate in the pro•esses of rapid ith'rpreta-
nonnigative I.yapnnov exponents determines the degree of tion. image synthesis, relation formation in knowledge base.
desynchronizat'ion. The contril;ution especially of the largest and parallel iyte-forrmation in the sequential flow of visual
one, X. will be do(inait. It is reasonable that the tin(e necessary information (Ilolden & Kryukov 19911. Koerner et al. 1987.
for desynch rnizationi is of tle saile order as the inverse of the Ileithoeck et al. 199.); Shimizu & Yaimagi chi 1987). Further-
largest ILyapnov \pol• 'idt. 0)(\ I), since X I is the fini c more. c.oicerning dvnaminc fatres iII coupled oscillator sys-
in'c'ssarv for tIhII r Iliwilificati•in of a tiny initial se 'paratioin. If t(.ls. studies byi "icoupled inap lattices ýKanmiko 1%9)) and
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CoinmentaryfShastri & Ajjanagadde: Association to reasoning

"phase dynamics" (Kuramoto 1991) should not he overlooked. significant increases in power particularly at the low fIrequencies
The latter concerns mainly a periodic and synchronized regime, with a smaller increase across almost tile entire spectrum. This
and the former treats various kinds of complex dynanmic wide-hand stimulus-related increase in spectral power may have
regimes. simply reflected that cells near the electrode fired more strongly

when stimulated than when not, and did so at a variety of
ACKNOWLEDGMENT frequencies. The changes in frequency distributions would not
I thank Walter Freeman for stimulating discussion, provide narrow-band high-amplitude field potentials to which

spike activity could become synchronized, and concomitantly,
tile oscillating M UA responses that we did see were in the alpha
range, and there was no stimulus dependence.

In area MT, all LFP frequency spectra again showed most
Ethereal oscillations Ipower to be concentrated in the low-frequency components and

there were broad-hand increases in amplitude oi stimulation.Malcolm P. Young All oscillating responses were in the alpha range and there was
UniversNy Laboratory of Physiology, Parks Road, Oxford OXI 3PT England little evidence that they were stimulus related. In both VI and
Ekictuant malN: mpy(aphysiology.oxord.ac.uk MT, therefore, with moving stimuli (cd. S&A, note 27) that were

When I was a first-year undergraduate psychologist I developed very similar to those used in the cat experiments, there was no
an interest in the idea that cognition might have something to do sign of the cat oscillation phenomena. It may be worth noting
with the brain, and was promptly dispatched to the department that this was not a "finding of no effect," which would not
of physiology to learn something about my chosen organ. After distinguish between insensitivity of the statistical analysis and
hearing a bit about nerve cells, impulses, and such, I produced a the absence of the phenomenon: The stimulus effect in the LFP
gigantic first essay in which I tied up what I had learned of analyses was statistically reliable in all frequency bands except
physiology into an account of how the brain worked in what, I those centred on the alpha range, and the statistical procedures
was convinced, was a monumental achievement in quality as it were able to detect oscillations at frequencies different from
was in quantity. As it happened, niy unfortunate tutor, an those observed in the cat.
eminent Spanish nociception researcher, had so queasy a feel- In the IT of anaesthetized monkeys, no MUA responses
ing about my contribution that he did not fill the pages with indicated the occurrence of oscillation. In monkeys trained to
learned red-ink disputation of the fine details of my proposals, as make a differential response to a small set of human faces versus
I expected, but simply said to me as he handed it back: "Like all a larger set of faces (at which discrimination they achieved better
psychologists, you have a scant regard for the facts!" than 90% correct performance), only two MUA recordings

So I can sympathize with Shastri & Ajjanagadde (S&A). Here showed oscillations in the gamma range. One oscillating re-
they are, responding, perfectly understandably, to a supra- sponse was associated with stimulation and the other was associ-
threshold signal above the noisy hubbub of neurobiology, when ated with the absence of stimulation.
this neurobiologist has to say that the phenomenon on which These results suggest that oscillating responses in the ganima-
they base their ideas probably does not exist in the primate. As frequency hand are remarkably rare in conditions very close to
the primate brain is the only one that we know is capable of those in the cat studies and even in conditions that would be
systematic reasoning, this may be a problem for them. But I thought to require the binding of features into a representation
sympathize even more with S&A, since only rather close inspec- coherent enough to form the basis on which the discrimination
tion of the neuroscience literature reveals this problem: The decision could be made. The fact that such oscillations were not
oscillophiles cited in the target article - in what one hopes is just stimulus dependent also suggests that oscillations are not re-
a temporary failure of elementary scholarship - never remark in quired for feature binding in the studied regions of the monkey
print on work which disagrees with them. And the problems to visual system.
which they studiously fail to refer are serious enough that they Having used the methods of Engel et al. (1990) to classify the
are not adequately dealt with in a few dismissive remarks in data as oscillating or not, we noticed a number of methodological
S&A's note 27. problems with this and related methods. For example, the cat

Basically, the problem is that the cat findings do not replicate researchers forgot to take account of the goodness-of-fit betweei
in primate visual cortex. For an alternative reading list on this, the Gabor functions (whose parameters were used to classify the
S&A might have considered Bair et al. (1992), Kiper et al. (1991), responses) and the correlograms. Obviousl}, ifone does not care
Gawne et al. (1991), Young et al. (1991; 1992), as well as the two how well a description fits, then Mrs. Thatcher could, for
papers noted in note 27, which they dismiss so lightly (Rolls example, be described as an enthusiastic European: If the
1991; Tovee & Rolls 1992). As far as I know, the Young et al. parameters of a description are to be used to classify something,
(1992) study is the most comprehensive primate study to date, the description should fit the described thing well. We found
so I will briefly review its contents. that Type I error due to this factor alone could vary between 17%

We sought to replicate the cat findings in the monkey. To do and 100% overestimation. Similarly, "burst," "delayed inhihi-
this, we recorded multiunit activity (MUA) and local field tion," and "return" components, which are sometimes seen in
potentials (LFP) in areas VI and MT, and MUA from the correlograms and which could be consistent with being in the
inferotemporal cortex (IT) of macaques. Recordings in all areas chaotic domnain and not only the oscillatory d(omain, would
were made under conditions of stimulation and anaesthesia as unfortunately have been included as "oscillating responses"
close as possible to those in the cat. In addition, we recorded according to the methods of Engel et al. (1990). These meth-
M UA in time IT of awake behaving monkeys while the monkeys odological difficulties leave the empirical status of some findings
performed a face discrimination task. The data were analyzed in this area rather uncertain. For example, how c(an we know
with methods taken from Engel et al. (1990), so that the primate that the "long har experiment" did not invsolve false positive's?
and cat results could be compared directly. It seems unlikely, in the light of these empirical facts, that

In VI, with driftf:g bar stimuli, all frequency spectra of the stimulus-related oscillations could be a general phenomenon,
LFPs showed.the greater part of their power to be concentrated and unlikely, therefore, that a lperi(odic temporal "code" is a
in the low-frequency components, and on stimulation UPIF general solution to the problem of binding the separate features
powwer slp'ctra showed broad band increases in amplitude and of anm object, visual or semantic, into a cohe'rint representation.
not a shift in power from low to mid-frequenuy as has been This is a nice illustration of the dangers of having one's psycho-
reliorted in the cat. Indeed, the effects were alnost the opposite logical theory disproved "by some irrelevaiit p)hysiological re'-
of those ill the cat: Stfi umulation was ass(wiated with statistically search'" (Broadl)'t 1958). and I smppos(' thai S&A have two
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options. Either they take Broadbent seriously, and stop building by SHHLUTI is synchronization of cell activity and the
models based, even loosely, on what's happening in neurobiol- propagation of synchronous activity along connected cell-
ogy, which would be a shame, or they pay a bit closer attention clusters. Since transient oscillatory activity seemed like a
next time. natural way of realizing such a behavior, we adopted

As for the rest of S&A's target article, it seems to me to be oscillations in our model, but oscillations per se are not
terribly brave, but, in the end, just cognitive science. essential for the functioning of SHRUTi. It is therefore

incorrect to link its biological plausibility with the exis-
tence or nonexistence of oscillations in the brain. The
crucial question is this: Is synchronous activity biolog-
ically real? The nonessential role of oscillations in our

Authors" Response model is clearly recognized by Rohwer and Strong (and to
some extent by Thorpe).2 Strong also points to some
architectural simplifications that might result from drop-
ping the periodicity requirement (but see RI.4). Eckhorn

A step toward modeling reflexive reasoning and Freeman do discuss the possibility that dynamic

Lokendra Shastria and Venkat Ahanagaddeb bindings may be represented by aperiodic (nonrhythmic)
*Cwruter and Intormation Science Department, Universiy of synchronous activity in the brain, but they fail to rec-
fwWrds. Phidadelphita, PA 19104 and bdhe/rn-Sc.hickard-tnstiut, ognize that such a representation is compatible with
niversity of Tuebingen. Sand 13, W-7400 Tuebingen. Germany SHRUTI.

Ehcbwt mail: astmmw@central.cis.upenn.edu; The primacy of synchronization in the representation
bnnssoOl @m&serv.zdv.uni4uebingen.de and propagation of dynamic bindings is pointed out at

Our response is organized into five sections. In section R1 several points in the target article, including the title.
we respond to issues concerning the biological plau- "We represent dynamic bindings between arguments and
sibility of our model. In section R2 we discuss questions fillers by the synchronous firing of appropriate nodes"
about its cognitive/psychological significance. Several (sect. 3, para. 3; see also sect. 1.3, para. 3; and sect. 3.1,
commentators pointed to alternative approaches to dy- para. 2). The behavior of p-btu nodes in section 3.2 and
namic bindings and reflexive reasoning. We discuss these r-and nodes in section 3.3 is defined in terms of general
in section R3. In section R4 we respond to some com- synchronous activity and then elaborated for the case of
ments about learning. The remaining issues are discussed oscillatory activity. The output of T-or nodes has been
in section R5. In what follows we refer to our model as specified as being oscillatory. This is not critical, however,
SHRUTI.1 and it is trivial to modify the design so that the output of

T-or nodes may be assumed to be a burst of activity whose

R1. Biological plausibility duration is comparable to 'n,,,•.
In the aperiodic case, the parameters T

mi,,, and armor

Before responding to commentaries about the biological correspond to the minimum and maximum allowable time
plausibility of sHiRuri let us repeat what we said in section between two consecutive firings of a cell-cluster involved
1.4 of the target article: "Neural plausibility is an impor- in synchronous activity. The interpretation of ( continues
tant aspect of this work - we show that the proposed to be the width of the window of synchrony (see sect. 3.1,
system can be realized by using neurally plausible nodes last para.). So the basic architecture of SHRuri remains
and mechanisms, and we investigate the consequences of the same even if we admit aperiodic synchronous activity.
choosing biologically motivated values of system parame- The propagation of bindings now parallels even more
ters. Needless to say, what we describe is an idealized closely than before the propagation of activity along "syn-
computational model, and it is not intended to be a fire chains" (Abeles 1982).
blueprint of how the brain encodes an LTKB (long-term It is important to note that dropping the requirement of
knowledge base) and performs reflexive reasoning." We periodicity does not change the predictions about reflex-
would like to stress that SHRIUTI is an idealized computa- ive reasoning. The restriction on the form of rules, the
tional model, and when we claim that it is biologically bounded depth of reasoning, and the constraints on the
plausible we mean that it is possible to realize its essential capacity of the WMRR (working memory underlying
components - the behavior of various types of nodes and reflexive reasoning) remain the same. The exact numeric
the functionality of the proposed network - using neural value of the ratioa, ,,,,/w, however, may have to be revised

wetware. using the appropriate neurophysiological data.

R.1.1. Synchrony, oscillations and biological plausibility. R1.1.2. What led us to oscillations? When he asserts that
One of the major issues raised in the commentary con- our ideas and SHIUTi are based on the phenomenon of
cerns the biological reality of oscillations. With varying oscillatory activity in the animal brain, Young (para. 2) has
degrees of emphasis Young, Freeman, Tsuda, and it backwards. On the contrary, the design of SHUTrr was
Eckhorn point out that periodic (oscillatory) activity does driven by the computational constraints on connectionist
not occur in the brain. Freeman and Young even go on to models enumerated in section 1.2 and the complexity
suggest that simtrri is therefore not biologically plausi- requirements of reflexive reasoning discussed in section
ble. This conclusion rests on a mistaken understanding of 1. 1. The computational constraints prompted us to use
the role of oscillations in simirri. temporal synchrony as a basis for representing dynamic

bindings (to obviate the need of propagating pointers or
R1.1.1. Oscillations are not essential for the functioning symbols). We chose periodic (oscillatory) activity simply
Of SHnUTI. The e.ssential fe-ature of neural activity rV(lI1iretd because oscillations seemed like the most straightforward
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and natural way of incorporating synchronous activity. As Poisson. Now assume that the dynamic tact "John bought
Thorpe points out, it was only later that we heard about a Rolls Royce" is injected into the system. We would
the evidence for oscillatory activity in the brain, expect two resultant trains of oscillatory activity to propa-

gate in the system. One would originate at the John and
R1.1.3. Can we conclude that oscillations are ethereal? buyer clusters and rapidly expand to include other clus-
The biological reality of oscillations is a matter of contro- ters representing owner, person, wealthy, and so on. A
versy. There are a growing number of reports of oscilla- second train of activity would originate at the Rolls-Royce
tory activity in the brain - these include findings in the cat and buy-object clusters and expand to include other
(see target article for references), squirrel monkey (Liv- clusters such as car and own-object. This oscillatory activ-
ingstone 1991), macaque (Engel et a). 1992; Kreiter et al. ity might last only a few milliseconds, after which the
1992), and even humans (Lado et al. 1992).3 At the same synchronization would probably break downi. The active
time, we have negative evidence concerning oscillatory nodes may, however, continue to tire at a high rate for
activity - we cite some papers in the target article and some time before reverting to the background rate of
Young cites some additional findings. So the issue is far firing.
from settled. In spite of such conflicting evidence, The model posits that arguments and focal nodes of
Young's emphatic assertion that oscillations do not occur concepts are encoded by small clusters of cells. Even if
in the primate brain and are unlikely to play a role in the reflexive reasoning following an input results in the
the representation of dynamic bindings does not seem activation of several hundred relations (predicates) and
justified. types/features, the total number of" nodes engaged in

synchronous activity during an episode of reasoning may
R1.2. Expected nature of oscillatory activity. Let us as- remain small - perhaps about 10U cells. Furthermore, this
sume that oscillatory activity underlies the representation activity would be distributed across the area(s) where
of dynamic bindings during reflexive reasoning. What conceptual knowledge is represented. This estimate is
sort of activity should we then expect to find in the brain extremely crude and speculative and may be off by an
during an episode of reasoning? The answer would vary order of magnitude, but it still conveys the essential point:
dramatically depending upon our expectations about the A very small fraction of cells (perhaps as few as one in
nature of representations used by the brain. It is crucial about a hundred thousand) may be involved in svn-
that we recognize this, because not doing so may lead to chronous activity during an episode of reasoning (this
erroneous expectations about the nature of oscillatory already assumes that we are focusing on some appropriate
activity in the brain, and in turn, to wrong interpretations 1-10% of the brain where we expect conceptual knowl-
of raw data. We address this question in the context of edge to be represented).
periodic activity but our remarks also apply to aperiodic
activity. R1.2.2. A fully developed sHnuTm-like system will have

If one believes in fully distributed representations and complex dynamics. Consider a fully developed siittrri-
assumes that entities are represented as patterns of activ- like system incorporating the functionality outlined in
ity over large populations of cells, one would expect a sections 10.1-10.4. The extended system would be capa-
large number of cells to participate in oscillatory activity ble of responding to continuous stimuli and of shifting its
during an episode of reflexive reasoning. On the other focus of attention. The dynamics of such a system would
hand, if one believes in more compact representations of be far more complex than the simple oscillatory patterns
the type adopted in SHtrrI, one should only expect a depicted in the examples shown in the target article. The
relatively small number of cells to participate in oscilla- frequency of its oscillations would vary constantly be-
tory activity. cause frequency increases whenever entities "leave'" the

Now consider Freeman's observation (para. 3) that WMRR and decreases whenever other entities "enter."
periodically firing cells form a small tail in a distribution of Different modules in the systemn would be firing at differ-
firing rates and that a majority of cells yield a pulse ent frequencies and each would have its own phase distri-
interval that is more Poisson than periodic. What one bution. It is not at all surprising that the oscillatory
concludes from the data would depend on one's assump- activity observed in the brain is far more complex than the
tions about the nature of representations. Someone who activity portrayed in the target article! \Vc had noted this
believes in distributed representation would be coin- in section 7.1.
pelled to conclude that oscillatory activity does not under-
lie the representation of dynamic bindings, but someone R1.2.3. Chaos and oscillations. An alternative. mnuch
who believes in more compact representations would find more complex description of neural activity based oil the
good evidence for the hypothesis that oscillatory activity notion of chaotic oscillations is offered by Tsuda. The
underlies dynamic bindings; because only a very small relation between his characterization and stitii'ri needs
fraction of cells would be involved in oscillatory activity at to be examined further, but it appears that Tsuda may be
any time, the small tail constitutes just the right evidence! underestimating the degree of systematicity required for

supporting reasoning of the sort we discuss in the target
R1.2.1. The nature of oscillations predicted by SHRUTI. Let article. The dynamics he describes seem more apt for a
us consider a thought experiment to illustrate the nature svstem that is not engaged in systemaiic revasoiiing resumlt-
of oscillatory activit' entailed by a simitrri-like system. ing from ai specific stimuilis. aud the )eicity oila S1I 'l-
Ass|||ie that the system is ill a -q|liescent" state, naniely. like svste|m in a ldise|igageld state could well be cha'latic.
it is fiot receivinig any stimulus and is not engaged in ally hut we think the activity of the appropriate' subset (f
s'stelliatic thought. At this timre tile node( ill the svsteuui niodes woi|ld hiat\. to gevt rgalriz('d rapidly oumee the
W011)(le I. hiring with Somne background rite, perhap's systeumi c'gage's ill s5st('lic rat ':•i'mz.i.
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R1.3. Dynamic bindings and neural communication. See- Second, we agree that these circuits are quite specific and
tion 3 of Eckhorn's commentary suggests that he may not complex. To put things in perspective, however, we would
realize how much information must be transmitted to like to point out that the concern about the circuits' being
communicate dynamic bindings during reflexive reason- too specific and complex to be biologically plausible is
ing. In discussing the limited ability of a neuron to misplaced and stems in part from the tacit assumption
transmit symbolic information we had estimated the that these circuits have to be learned by an agent. There is
amount of information transmitted in 15 msee to be about no reason, however, to assume that such circuits - or,
2 bits (see Note 4). This was based on the assumption that rather, circuits that are functionally equivalent to these -
the firing rate typically varies between 1-200 spikes/sec. are learned developmentally. It is enough to assume that
Eckhorn, however, argues that the maximum rate of firing they have been "designed" by a process that operates at
can be as high as 300 bit/see, and that if we assume a 20 the evolutionary scale. Surely evolutionary processes are
msec cycle time, the amount of information transmitted capable of crafting something as simple as the circuit in
by a neuron can be as high as 8 bits. Unfortunately, this Figure 22. To think otherwise amounts to ignoring the
does not change the situation one bit! Neither 2 nor 8 bits intricacy, specificity, and complexity of the brain, not to
are sufficient for solving the dynamic binding problem mention the human body. Note that the internal circuitry
during reflexive reasoning. The number of bits a neuron of each switch is the same, so the same circuitry can be
would need to transmit to communicate the identity of an replicated over and over again. Learning need only in-
argument filler will be more than 20. Contrary to what volve connecting the input and output "wires" of preexist-
Eckhorn seems to imply, the number of distinct entities ing switches to the input and output wires of concept
that may fill arguments in dynamic bindings is not 500 but clusters.
closer to 100,000.4 This means that even if we were to On a different note, Strong suggests that the design of a
assume perfect coding and noiseless communication we concept cluster may be simplified if the periodicity re-
would require 20 bits to communicate the identity of each quirement is relaxed. This proposal is interesting because
filler. it allows the potential of sharing nodes and seems to be

Eckhorn also suggests that the neuronal limitations in capable of self-induced phase separation. Although we
communicating symbolic information may be overcome can see how the proposed alternative allows multiple
by using clusters of neurons rather than single ones. In instances of a concept to be represented, it is not clear
section 9.4 of the target article, we discuss such a possi- how it solves the difficult technical problem ofcommuni-
bility and point out the advantages of using the temporal cation between two concept clusters. It would be instruc-
synchrony approach. tive to generalize the proposal to encode n-ary predicates

In paragraph 5 of his commentary, Thorpe suggests so that several predicate instantiations may be repre-
there is a tension between the fact that s1HtUrr takes sented without cross-talk. It would also be interesting to
several cycles of synchronous activity to compute a re- see how the arguments of antecedent and consequent
sponse and other evidence suggesting that neurons re- predicates can be linked to ensure that bindings pertain-
spond within just one or two spikes (cycles). He seems to ing to several instantiations may propagate without cross-
be overlooking the fact that an episode of reasoning takes talk.
several cycles of synchronous activity because it involves
the propagation of synchronous activity over several R1.5. Timing estimates. It is argued by Garson and by
layers of cells - as many layers as the length of the chain of Hirst & Wu that the nodes in SHRurTi do not correspond to
reasoning. The propagation of activity across each layer, actual neurons and that it is therefore inappropriate to
however, only takes 1-2 cycles (spikes). This is exactly conclude anything about the actual time course of reflex-
what one would expect in view of Thorpe's discussion in ive processing based on an analysis of our model. The
his commentary (paras. 3, 4). timing data we present in section 8.1.1 are meant to be a

broad indicator of reasoning times and their main purpose
R1.4. Complexity of node types and circuits. Several is to demonstrate that reflexive reasoning can be per-
commentators (Dawson & Berkeley, Diederich, and formed within a few hundred milliseconds by a system of
Carson) suggest that the node types used in SHIurri are simple and slow computing elements. Note that the basis
not biologically plausible. The behavior of p-btu nodes is of our estimates is the time it takes synchronous activity to
eminently plausible and if Abeles (1982) is right about the propagate from one cluster of cells to another. Our esti-
significance of synchronous activity and synfire chains, it mates are therefore not too sensitive to actual encoding
can even be argued that a p-btu node with an appro- details as long as the number of layers in an alternative
priately high threshold is a reasonable idealization of a implementation of the switches and clusters is compara-
neuron. The other two types of nodes, namely, the r-and ble to the number of layers in our implementation.
and '-or nodes, are best viewed functionally as simple
circuits made up of a small number of cells. R1.6. Restriction on the number of entities. Our estimates

Cottrell, Dawson & Berkeley, Diederich, Carson, of the maximum number of different entities that can be
Koerner, and Touretzky & Fahiman remark that some of referenced in the WMRR arc challenged by Koerner. lie
the circuits ised in siHIsrri, particularly the multiple argues that we should not use data about the periodicity of
instantiation switch networks, are too complex and spe- oscillations of cells involved in early visual processing to
cific to be biologically p)laiusible. First. the switches de- make inferences about complex psychological processes.
scribed in the target article are intendled to demonstrate citing his own interpretation of tli(' 7 ± 2 limit based on
that it is piossible to achieve the (d'sire•d control and the much slower 0 activity.
hlmnctionmlitv 1w circuits iiade IIp of p-ltu, "r-and, and r-or Our estimates apply to first-order bindings, those for
nmo(des. "l'Se cilc'lits illl)ly dl'mlmnstrate th1is possil)ility. which argmmment fillers ar(' ('mtities and not dnamii'ic
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relational structures (an entity may be a complex rela- decision making where the systemn must choose one of
tional structure as long as it is a static one). We believe that several competing hypotheses, find a globally consistent
reflexive reasoning primarily involves first-order bind- state, and carry out ficused search for support. This is
ings; for such bindings, the appropriate interpretation of exactly the sort of processing we have described as reflec-
1T is the cycle time of relatively small cell-clusters partici- tive (see sect. 1). It is quite likely that such reflective
pating in synchronous activity (periodic or aperiodic), reasoning requires highly controlled and focused activity
This interpretation of ir would, we believe, apply to first- driven by an attentional mechanism (see sect. 8.2.2).s
order bindings involved in reflexive reasoning as well as Note also that the view of representation and process-
vision, modulo variations in the characteristics of differ- ing put forth by Koerner relies much more cn finely
ent cell types. structured temporal activity than on the kind envisioned

A possible reason for Koerner's objection may be that in swu'trz (even in its extended form). One of the features
he is referring to higher-order relational structures such of stiurri is that it uses a great deal of spatial structure to
as patterns of activity corresponding to complete solutions reduce its dependence on the fine-grained structure of
and hypotheses, in which fillers themselves can be dy- temporal activity It is possible that a greater dependence
namic relational structures. If, as Koerner suggests, tem- on fine-grained temporal structure has led Koerner to the
poral synchrony is used to prevent cross-talk among such conclusion that central control is necessary for controlling
complex and large dynamic structures, the associated the temporal aspects of activity.
temporal activity is likely to have a much larger cycle time Dawson & Berkeley (para. 2) and Touretzky & Fahl-
and hence a much higher value of -r, man (paras. 8-10) confuse an "interface" with a "central

controller," accordingly arguing that our system already
R1.7. "Local" representations and biological plausibility, has a (hidden) controller! We respond to this in section
It is suggested by Touretzky & Fahlman (paras. 5, 6) and R5.3.
by Hirst & Wu that sHRurI is not biologically plausible
because it uses localist representations! The representa- R1.10. Some Imaginative arguments against the biolog-

tion of a predicate in SHRUI is not a single node; a cluster ical plausibility of SHRUTI. Our system is not biologically

is n + 2 nodes (n role nodes and 2 '-and nodes). As plausible Dawson & Berkeley (para. 5) claim, because it

Hummel & Holyoak point out, this means that our repre- requires an "external learn signal" to trigger the learning

sentation of a predicate instance is a distributed pattern of a fact. Their observation is based on a statement in

(though not in a holographic sense). In addition, each section 10.5 about a scheme for storing facts in medium-

argument node maps to several cells that may be physi- term memory. We indicated there that a fact is learned in

cally distributed. So our model makes use of a physically the presence of a "learn signal." Surely it is plausible that

"distributed" representation even though the representa- an internally generated signal based on the novelty or

tion of an argument is conceptually "localist." In view of salience of an input allows the one-shot learning of a

the above, it is not clear which biological axiom Touretzky situation (fact). Next, Dawson & Berkeley invoke the

& Fahlman and Hirst & Wu think we are violating. If they biological implausibility of backpropagation to claim that

are suggesting that our model does not adhere to the our system is not biologically plausible. The most imag-

holographic version of distributed representation then we inative objection to the biological plausibility of our sys-
refer them to Hummel & Holyoak's commentary and tem, however, is that the limitation of the (logical) infer-

section R3. 1, where it is argued that such representations ential power of our system "casts further doubt on its
cannot support systematicity and knowledge-level putative biological plausibility"! To suggest that sHtUrT is

parallelism, not biologically plausible because it lacks inferential
power seems to miss the point altogether.

RI.8. Are brain mechanisms totally distinct across modal-
ities? "Whether or not the brain makes use of temporal R2. Cognitive significance
synchrony in object perception has no bearing on how we
reason abstractly," writes Sloman (para. 2, emphasis The comments about the cognitive significance of sHIrUt
added). Diederich (para. 8) expresses a similar concern cover a wide range. On the one hand, we have Touretzky
(though in a milder form). We think Sloman's stand is an & Fahlman's sweeping dismissal of our model; on the
extreme one. There are good reasons to suspect that the other hand, we have Oaksford & Malloch's enthusiastic
mechanisms developed for perceptual and motor process- appraisal of it as "potential landmark in the cognitive
ing were coopted by the brain to solve other cognitive science/psychology of human reasoning"! We think an
problems. objective and careful evaluation of the target article will

help the reader determine which of these is the better
R1.9. Central control and SHRUTh. Doubts are expressed by characterization of siiUrri.
Koerner about our view that the reflexive-reasoning pro- The criticism of smHUri centers around two themes:
cess can run without a central controller. He suggests that The first concerns the lack of empirical support. The
central control will be required during reasoning and second concerns incompl'te coverage of the reflexive-
decision making. He envisions such a controller guiding reasoning phenomenon.
the activity into a "globally consistent" state and "focus-
ing" the "search" toward additional support for the chosen R2.1. Empirical support and cognitive modeling. \e
hypothesis. We welcome his comments alnd( pointers to agree that, contrary to standard practice in isychologýy.
his work on related prolblems, but we think they pertain we have not tried to replicate a specific data-set oltaiiu'd
more to reflective, than reflexive, processing. Notice that in a lab)oratorv experiment. We hase ptursued a v'vr%
what he describes seems like (delilbrative reasoning and difle'rent approach. ficusing oil a set of spa'c aiid tinn'
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constraints obtained from some broad but well-grounded can compute transitivity with ease; it simply demon-
observations about the nature of reflexive reasoning (see strates the rather obvious fact that people are good at
sect. 1.1.1; see also Hampson, Oaksfurd & Malloch, and identifying certain linear orderings - in this case the natu-
OhIsson). At the same time, we have also focused on a set ral ordering of integers! Note that an agent can determine
of computational constraints that characterize the archi- whether Pimplier(ij) simply by noting whether or not i is
tecture underlying cognition - in particular, its limited less than j!
ability to process and communicate symbolic information Surely Sloman must realize that his example does not
(sect. 1.2). What is described in the target article is (1) a provide an appropriate test of the prediction. Consider
detailed model that satisfies these two sets of constraints the following "experimental data": After being shown the
and (2) the psychological implications of the model. sequence Foo1 , Foo2 ..... -,oo 37, subjects were able to

In suggesting that our model is rich in assumptions recall correctly all the 37 items in the sequence, further-
Sloman may be missing the significance of these computa- more, they were also able to recall the exact order in
tional and architectural constraints and labeling them as which the items were presented. Would Sloman conclude
mere assumptions. We sympathize with him for this from this that our memory span is 37 and that there is no
confusion. As Oaksford & Malloch point out (para. 3), our recency effect?
approach is not very common in cognitive psychology,6 As for explaining human fallacies, the model makes a
where issues of computational effectiveness and sca- number of predictions about when people might provide
lability are often secondary and the emphasis is on build- no answer or a wrong one. The constraints on the form of
ing empirically adequate models that fit some well- rules, the capacity ofWMRR, and the depth of'reasoning
circumscribed body of data. all point to the numerous ways in which humaan reflexive

reasoning is fallible. We are also aware that we have not
R2.1.1. sHRunt and predictions. In addition to satisfying modeled all sources of error and all factors that lead to
the general set of constraints on space-time resources and nonprescriptive behavior (e.g., see sect. 5, para. 2). The
information processing abilities of nodes and links, phenomenon that Sloman refers to, namely, the graded
SHRuri also leads to several specific and testable predic- nature of category inclusion, is the type of phenomenon
tions about the nature of reflexive reasoning. A number of that is relatively easy to model in a connectionist network
psychologists have remarked on the significance of these ,ising weighted links, so we are not surprised that Sloman
predictions (see Diederich, Hampson, Hummel & Holy- has a "simple model" that mimics this specific effect.
oak, Oaksford & Malloch, and Ohlsson). As described in Touretzky & Fahiman set up a false contrast when they
section 8, SHitUTI predicts the capacity of the working cite the work of Collins and Michalski (1989) in evaluating
memory underlying reflexive reasoning (WM RR) and the the significance of our work. The two efforts are motivated
form of rules that can participate in such reasoning. by very different concerns and goals. Collins and Mi-
SHR•Ti also predicts that the maxhmum depth of deriva- chalski's work is clearly significant, but it does not address
tions during systematic reasoning will be shallower than the problem of reflexive reasoning, computational effec-
that of associative priming (sect. 8.2.6). tiveness, or biological plausibility.

Oddly enough, Sloman n id Touretzky & Fahlman We do agree with Sloman that it would be nice to see
discount all these predictions. Inexplicably, Sloman dis- how our model could comprehend a simple story. We also
misses the predictions concerning the capacity of WMRR agree with Ohlsson that the results of the model PLced to
in suggesting that Baddeley's work "already accounts for be integrated with exivting psychological theories and
working memory data"! Yet the target article explicitly with Martin that it is important to identify the relevant
states that the WMRR is the functional description of the empirical data that would serve to corroborate the reflex-
dynamic activity of the LTKB and is quite distinct from ive/reflective distinction suggested by SHRUTI. Oaksford
the notion of working memory studied by Baddeley (see & Malloch (para. 7) point to experimental results that
sect. 8.2.2). We would like to stress that our predictions provide corroborative data about the reflexive/reflective
about the capacity of WMRR are not only potentially distinction. We hope other cognitive psychologists will
important for reflexive reasoning, but they may also lead also contribute in this regard. In this context we would
to insights into other reflexive phenomena as well (e.g., like to add that the validation of the constraints proposed
see Henderson's [1992] work on parsing). by the model need not come from the area of reasoning

Sloman also describes the restrictions on the form of alone. They may also be validated by examining their
rules identified in section 8.2.5 as "rather arbitrary" and implications for parsing, another reflexive phenomenon,
"unlikely to be useful." He overlooks the discussion in and one for which there exist extensive empirical data.
section 4.9, where we suggested why the constraint may Henderson's (1992) work on parsing, using a SHaiUTi-like
have a fundamental computational basis. Since the writ- model, is beginning to show that such restrictions hell)
ing of the target article we have a proof that the constraint explain some of the limitations of human parsing by
on the form of rules is an essential one for reflexive modeling certain garden path phenomena and people's
processing (Dietz et al. 1993). In other words, reasoning limited ability to deal with center-embedding.
involving rules that violate the constraint in question
cannot be carried out using space that is only linear in the R2.2. Questions about coverage: Red herrings and real
size of LTKB and time that is independent of the size of issues. Several commentaries raise the issue of coverage,
LTKB. pointing out that S[IRifIii (foes not model every type of

Sloman goes on to argue that our predictions about the reflexive-reasoning behavior. These include several in-
limnitatiois on the use of transitivity are also wrong. His sightfid remarks by Barnden and lHummel & Holyoak
counterexample seems to be based on a misunderstand- and valid observations about the lack of a treatment of
ing of the issuie at hand. It do•,S not establish that people negation by Cottrell and Garson. Munsat and Bauer
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seem to have arrived at a genuine iiisconception about Wu, several other comnmentators (Barnden, Feldman,
the reasoning ability of a sjmurri-like system, whereas Hampson, Martin, Oaksford & Malloch, Ohisson, Palm,
Touretzky & Fahlman first caricature our model and then and Strong) apparently had no difficulth seeing the
dismiss it as uninteresting! broader significance of our model.

R2.2.1. Logic, deduction and smuinUl. According to Tou- R2.2.2. Reflexive reasoning is limited reasoning. Not only
retzky & FahIman, our model is simply a limited theorem do Dawson & Berkeley seem not to have understood what
prover. They dismiss our work based on this claim, o,.. work is about (they think that it is only relevant for
arguing that because human reasoning is not purely deduction), but they also criticize it for not being as
deductive, swrrt cannot be a credible model of it. powerful as a full-blown theorem prover. Restating the
Sound argument, but the premise is unfortunately false. constraints we identified on the capacity of WMRR and

Hirst & Wu state that not all reasoning is deductive, the form of rules, they write that "'although these two
enumerating fivt problems they (rightly) claim require limitations are acknowledged," we have failed to note "the
nondeductive reasoning. We agree (see Ajjanagadde full extent of the problems they produce." Dawson &
1991; Shastri 1988a; 1988b). Berkeley don't realize that we consider the identification

Let us reiterate the basic technical problem we have of these "limitations" a major contribution of our work in
solved: We have extended the representational adequacy that it helps delineate reflexive reasoning from reflective
and inferential power of neurally plausible models by reasoning.
demonstrating how connectionist networks can (1) repre-
sent relational structures in a dynamic manner and (2) R2.3. Plausible and possible inference. We agree with
propagate such structures efficiently and systematically in Bauer that a reflexive reasoning system should be able to
accordance with "rules." Note that the essential charac- separate plausible inferences from the vast set of possible
teristic of a rule is that it specifies a systematic mapping inferences and that a "model" should be capable of repre-
between the roles of relational structures. As pointed out senting implicit information that can be mad,- explicit if
in the target article (1) these relational structures can be and when the need arises. Bauer seems to have the
viewed as schemas or frames, hence rules may be thought incorrect belief, however, that Simurij lacks these attri-
of as mappings between schemas or frames, and (2) the butes. This may stein from wrongly assuming that (1)
rules (mappings) can be "deductive" or "evidential," in SHRUTI only encodes plausible inferences in the 1,TKB,
particular, they may be sensitive to the type/features of and (2) everything SHRUTI infers has to be explicitly
the role fillers in a given situation. represented in it,

The representational significance of the mechanisms Possible inferences. Consider the case of forward (pre-
developed in SHRUTI extends beyond deductive reason- dictive) reasoning. Given an input, the set of inferences
ing; the ability to represent and systematically propagate that SHRuri can draw using its LTKB corresponds to the
relational structures dynamically lies at the core of not set of possible inferences. In the purely deductive case,
just deduction but also evidential, abductive, and analogi- this set consists of the inferences that can be derived by
cal reasoning. We discussed this in section 3.5 and at the repeated application of niodus ponens to the rules in
several places in the target article, pointing out the the LTKB plus the input, without exceeding the capacity
broader representational significance ofbeing able to deal limitations of WMRR and the bound on the length of
with predicates, variables, rules, and dynamic bindings individual derivations.7 Notice that there is a clear dis-
(see, e.g., sect. 1.3, last para.; sect. 2.5; sect. 10, para. 1). tinction between (1) the set of all possible deductions that

In section 2 we made what we believe is an important SHRrIrI can compute from its LTKB plus the input, and (2)
distinction between systematicity and appropriateness the set of all logically possible deductions that follow from
that helps distinguish the problem of representing and the same LTKB plus the input. The former excludes a
propagating relational structures from the issue of the large number of valid deductions whose deriv'ations
strength of such a propagation. In section 5 we showed would cause WMRR capacity to be exceeded or whose
how these two factors could be integrated by making the length would exceed the depth bound. lHence sinU'ri
propagation of bindings from one structure to another provides a natural explanation for why a large class of valid
sensitive to the types/features of the fillers in the source deductions cannot be made.
structure. The idea that the strength of a rule firing can be Plausible inferences. The possible inferences drawn by
defined as a function of the types of argument fillers is an SunUTr will soon decay because of a dispersion of sen-
important one and does more than "lend a little more chronous activity unless thex, are reinforced by subse-
[flexibility to] nmodus ponens." quent inferences (see sect. 8.5). Note that inferences that

It is true that we carried out a detailed treatment of reinforce each other are the ones that produce the same
deductive reasoning only in the target article. We did this dynamic bindings. This means that in a system based on
to investigate fully the strengths and weaknesses of the temporal synchrony, inferences that reinforce one1 an-
temporal synchrony approach as a mechanism for repre- other produce coherent activitv lit(erally) and theref'or('
senting and systeimlatically propagating relational struc- survive long ('nol•gh to affect other pro('cssing or get
tures. Note, however, that the predictions about \VMRI stored in lle(tiln-tehrn memor\. Thus plausible imih'r-
capacity and the restriction oil the formu of rmles would enc('s correspond toI inht'rences that are reminfr•e'dI b\
apply not onl 1) d('(ll(etiVe reasonin hut also to eviden- otlh'r inf'ernces or inpults and the're'fe survive. luplall-
tial. al)huctive, and analogical reasoming. This should siblh ilflren('(s ar(' the o('s that stand alo,('. allld hli(('.
further convinice the r('adhrofthe nmethodohlgical signifi- soon de(ca\. sili~irtI pre'dicts tlhat after ('ea(h inpul, all
can(('( of ('paratinoi the issuecs o(f 'yst(inaticity and appro- p)ossibl(e il 'fre'nc('es vc't ohraul l.ut •nl thl(' 1)l:lllsiblh' v l.s
priat'mne I 'ilikc lmoretzky & Fahl.nan alod llirst & sill\iv(.
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Consider an extended system encoding evidential rules addresses! Perhaps Munsat wrongly thinks the LTKB is
and the ability to combine forward and backward reason- an unstructured set of propositions. If the LTKB were an
ing, in other words, a system capable ofabductive reason- unstructured set of propositions, Munsat's concerns
ing. Now consider the input "John bought a booV- fol- would certainly be appropriate. In SHRLuI, however, the
lowed by "It is Susan's birthday. " The input "John bought a rules in the LTKB are highly organized and form an
book" will lead to a number of possible inferences. These inferential dependency graph in which they are direct
might include, among other things: "John wants to read (hardwired) mappings from predicates to predicates and
the book" and "John wants to give the book to someone. " provide the necessary inferential paths for the automatic
The input "It is Susan's birthday" will likewise lead to and efficient computation of inferences. In the case of an
number of possible inferences. Some of these will rein- input, these hardwired mappings lead to all and only the
force the inferences from the previous input. In particu- possible inferences that follow from the input. For exam-
lar, some of the inferences triggered by "It is Susan's pie, the input "Sally bought a Rolls-Royce" would physi-
birthday" will reinforce the prior inference "John wants to cally cause the activity "Sally owns a car" but not "the
give the book to someone" and also provide the binding moon is a satellite."
"Susan" for the recipient role. Thus, the inference "John Munsat also worries about the need for a homunculus
wanted to give the book to Susan" may emerge as the to decide what makes sense. One of the appeals of
coherent (plausible) inference and survive, whereas the connectionist models is that they offer an alternative
inferences "John wants to read the book" may decay. interpretation of what it means to "make sense." These

Another apparent misconception of Bauer's is that include (related) notions such as reaching a locally mini-
SHRtUTI can only infer something that is represented mum energy state, being in an attractor state, or forming a
explicitly in LTKB! This is not the case. SHRU'r is capable stable coalition. These are related notions, and in the
of performing inference, which means that it can make context of reasoning they correspond to activity states
explicit things that are only implicit in the LTKB or the where, for example, the cause-and-effect relations be-
input. For example, if the system is told "Harry bought a tween active predicates are mutually reinforcing.
Rolls-Royce" it infers "Harry owns a car" and thereby Munsat rightly observes that people can tell you what
makes explicit something that was only implicit in the would have to be the case for a story line to make sense.
input. But isn't this exactly what abductive reasoning captures?

The example Bauer gives (about driving to the store) So given "John slipped on the floor," an abductive rea-
can easily be accounted for in the system described in the soner might come up with the hypothesis "the floor might
target article. Bauer's example simply illustrates that one have been wet," and "someone might have mopped the
of the "rules" in the LTKB should embody the following floor." Of course, the LTKB would have to include the
commonsense knowledge: commonsense knowledge that the floor's being wet can

Ifan agent goes from a sources to a destination d during a time lead to someone slipping and falling, and that mopping

interval [tl,t 2], then for any location I on the path from s to d the floor causes it to be wet. But this is exactly the sort of

there exists a time t in the interval [t,,t 2 ] such that the agent will commonsense knowledge we would expect to be in the

be at I at time t. LTKB of an agent.
About the joke from "Cheers." We believe that a rea-

A little pause will convince the reader that the knowl- sonable modeling of the LTKB of an agent exposed to
edge expressed above would be part of our common popular TV fare would allow the modeling of the joke in
sense. The LTKB can also be assumed to include other question. We do not think our ability to understand such
pieces of common sense such as "driving from a to b jokes implies anything magical about the contents of our
implies going from a to b" and "the distance from the LTKB or our reasoning ability - at least not in any way
source to a point along the path is a fraction of the total that transcends our already remarkable ability to perform
path distance." If the LTKB contains such commonsense reflexive reasoning.
knowledge, then given "John drove from his home to the Garson rightly points out that it would be unrealistic to
store," a SHRUrI-like system will be able to answer all the assume each predicate to have all the arguments required
queries of the form, "Did John drive a third ofthe distance for accommodating the potentially large number of mod-
between his home and the store?" ifiers that might arise in various situations. The problem

can be solved as follows: Predicates are assumed to "in-
R2.4. SHRUTI and the LTKB assumption. Like Bauer, Mun- herit" arguments in much the way that concepts inherit
sat also expects the right sort of behavior from a reflexive attribute values. For example, argu ments such as location
reasoner. He feels that neither SHILTri nor any other and time-of-occurrence maxy be associated with the gen-
system based on the LTKB-assumption (see Munsat) can eral predicate event and not replicated in predicates
embody reflexive-reasoning ability. We think this is too corresponding to more specific types of events such as
pessimistic and that an extended SHRLTri-like system sell. When the sell predicate is instantiated, the appropri-
would be capable of' p('rforming the sort of reasoning ate rule (the one that encodes: "sell is an event") will lead
described Iy Munsat. I ls misgivings arise partly from the to an instantiation of the predicate event. Once event is
sanic set ofl nismnl(l(hrstanlini( s that led Baue'r to conclude active, its argumnents locationi and lime-of-occurrence
that (1) everything infi'rred by simstrm'! has to be repre- would become available and may be bound to the value of
s('nt('(d explicitly in t"he I;I'K , and (2) there is no distinc- location or time('-of-occurrenc, provided by modifiers.
tionm l)('tv('.' possibl' aid plausible inf,'r('nc'('.

It is snrp)rising that Munsat won(h'rs how the right rules R2.5. Some real limitations. Sc\vral commenntators have
and flcts b'co'me active froinm amioig the millions of ril's pointed (nit some real limitations in the(' ('xprcssiv(' power
and la(.ts, be'als' this is oin oftle co(re p bllh'is sill•trli' of sIliI•TI \vis- 'I-vis r('fl('xiv'c reasoning. Althmigh soni' of
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these can be readily overcome, others would require to incorporate novel, rulelike inflormiiationi during r.ll.x-
significant effort. ive reasoning may l)e extremely limnited.Y Although Barn-

Cottrell (para. 4) and Garson point out that the target den does not reject this claim outright, lie expresses some
article does not deal with negation. The abductive reason- doubts and oflers a counterexamnple. But Barniden's is not
ing system described in Ajjanagadde (1991) suggests one necessarily a counterexample. As stated in section 5,
way of handling it. Cottrell points out another promising paragraph 7, the use of types allows certain rulelike
alternative. Referring to some of his earlier work, Cottrell information to be expressed as a 'act. " Specifically, if the
cautions us that the introduction of negation might slow ".rule" involves only unary predicates in the antecedent
down some of the computations. The difficulties Cottrell then it can be expressed as a fact. Thus, instead of
refers to, however, were partially due to his use of default expressing "Everyone at the party was a toothbrush sales-
logic (Reiter 1980) as a framework for modeling inheri- person" as a rule Vx at-party(x) ::> sells(x, Toothbrush)
tance with exceptions. We have argued elsewhere (Shastri one could express it as sells(at-party, Toothbrush), where
1988a) that default logic is not the appropriate tool fir at-party just refers to the set of people who were at a
modeling what is essentially a problem of evidential/ particular party. Barnden's example, however, does high-
probabilistic reasoning. We have also shown that an evi- light that a reflexive reasoner should he capable of refer-
dential treatment of this problem leads to a connectionist ring to dynamic "sets" such as "'the people at a specific
network that can compute inheritance with exceptions party."
effectively in time that is just proportional to the depth of
the inheritance hierarchy. The inclusion of negation R2.6. Relation between reflexive and reflective reasoning.
would support the encoding of rules such as A(x) -- - B(x) Several questions are posed by Ohlsson and Martin
and would in turn allow the system to draw inferences of concerning the relation between reflexive and reflective
the type "John is not taller than himself." reasoning; some answers are provided by Oaksford &

Barnden (para. 8), Hummel & Holyoak (para. 3), and Malloch and Hampson.
Garson (para. 7) point to an important restriction on the Shift from reflective to reflexive. As suggested in the
representation of dynamic structures in SHRUTI. SHIRUTI target article, rules that participate in reflexive reasoning
can only represent dynamic structures containing first- must be integrated into the LTKB by being embedded in
order bindings - namely, the fillers of arguments iu a the inferential dependency graph. This integration is
dynamic structure must be entities; they cannot them- expected to be a slow process requiring repeated experi-
selves be dynamic structures. Note, however, that an ence or observation. Hampson (para. 2) offers some Sup-
entity can be a complex structure as long as this structure porting evidence and points out that this is consistent with
is static, that is, built out of hardwired nodes and links, the general view that practice shifts processing in the

A possible way of expressing higher-order bindings is to direction of automaticity (also see Strong). However,
use a richer temporal structure than the one used in simuri also predicts that rules whose form violates the
sHtruri. In such a scheme, first-order bindings would be restriction stated in section 4.9 cannot become part of a
represented by very fine synchronization using short reflexive process.
cycle times and narrow windows of synchrony, while Reflexive and reflective reasoning are not disjoint pro-
higher-order bindings would be represented by coarse cesses that use disjoint representations and mechanisms.
synchronization using long cycle times and wider win- We think that reflexive reasoning is our primary and basic
dows of synchrony. Koerner seems to be advocating such reasoning mechanism. Reflective reasoning involves a
a multilevel temporal representation. The problem with combination of reflexive reasoning and additional mecha-
this approach, however, is that it can lead to complex and nisms and representations. These would include an atten-
potentially unstable activity (see Koerner). tional mechanism for "remembering" a small number of

We believe that reflexive reasoning primarily involves input or inferred facts temporarily. 1) In other words, we
first-order bindings and many problems that seem to will require an overt-STM that might very well corre-
require higher-order bindings can be reformulated so as spond to the usual notion of a working memory (Baddeley
to require only first-order bindings. For example, con- 1986).
sider the representation of the nested structure: go(John, OhIsson wonders why agents use reflective reasoning if
path(at(horne))), which may be read as "John went on a reflexive reasoning is so efficient. The answer is quite
path that led to his home." A dynamic representation of straightforward: Agents resort to reflective reasoning be-
this structure might appear to require a third-order bind- cause they must. If the amount of dynamic memorv
ing for the second argument of go. Such a nested struc- required for solving a problem exceeds the VM RR capac-
ture, however, can be expressed as a dynamic structure ity, if the depth of reasoning required to solve a problem
involving only first-order bindings by assuming that an exceeds the depth bound of reflexive reasoning, or if the
instantiation of go creates a flat dynamic structure via the form of rules required for reasoning violates the form
"rule": constraint, the agent will have to resort to reflective

reasoning and use conscious deliberation, props, and/or
V x:thinig, Y:thinmg go(x.y) Z >1 p:path, I:location other external representations (see Oaksford & Malloch,

go'(x,p) A to'(pj) A flt'(I1,y0 paras. 6-7).

which says that go(x,y) means that there exists a path 1
and a location 1, such that I is "at y," p is the path tol. and x R3. Paradigmatic issues
"goes on p. (Additional rules involving the predicates go',
to', and at' would specify the meanings of the pre(licates R3.1. Distributed representations: The magical alterna-
go". to', and at'.) tive. The magical powers of' distribut'd represe'ntation's

In thw target artice' wve hal ('onjectured that muir ability art' invoked by Garson to suggest that oir w~okis miu-
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directed. Yet none of the existing models based on distrib- cates a flexible interpretation of roles. In a sense, SHituIr
uted representations come anywhere close to demon- already exhibits such flexibility. Consider the activity
strating the expressiveness, inferential adequacy, and resulting from the input "John owns a car." This input will
scalability of SHRUrI. We hope that the proponents of result in the roles -owner" and "potential-seller" firing in
distributed representations will recognize that a distrib- synchrony with John. One can view this activity over the
uted system - at least in its pristine form - cannot have role nodes as the distributed pattern corresponding to the
the necessary combination of expressiveness, inferential .soft" role being filled by John. Now imagine that there
adequacy, and scalability. As Hummel & Holyoak point are certain types of objects, sayfoo, that can be owned but
out, there is a basic tradeoff between distributed repre- not sold. This knowledge would be encoded as the appro-
sentation, systematicity, and parallelism; no amount of priate type restriction on the rule between own and can-
handwaving can make this tradeoff disappear. sell. Now if we present the input "John owns a foo," the

A system using a distributed representation for argu- resulting activity will only involve the role "owner" firing
ments and fillers can only represent one dynamic binding in synchrony with John. Thus in this situation, John can
at a time. How does Carson expect such a system to be viewed as filling a different role given by a different
perform rapid reasoning (or parsing) within the desired pattern of activity over the role nodes.
time scale? It should not come as a surprise that xPes and Halford offers a comparison of the tensor product
TPPS, two systems based on distributed representations, approach (TPA) to dynamic bindings and the approach
were serial at the ,nowledge level and could only apply used in sHwri. We welcome the comparison but disagree
one rule at a time. with some of the specifics. For example, Halford says that

Rohwer recognizes the advantage of using temporal the TPA representation of R(ab,c) also represents the
synchrony, suggesting that to utilize space in an optimal influence ofcon R(a,b). But even SHRUri's representation
manner one should use temporal synchrony in combina- has a similar ability. Consider the representation of
tion with distributed representation. But by using only give(John, Mary, x) and the inferences that would follow
temporal synchrony and interleaved node activity, a dis- from this partially instantiated relation. Now imagine
tributed representation system can only represent a small introducing the binding (g-obj = a-valentine) in the above
number of dynamic bindings. Hence the "optimal" use of relation instance resulting in give(John, Mary, a-valen-
space will mean giving up the ability to represent a tine). A number of additional inferences would now fol-
large number of dynamic bindings simultaneously and low. Would these additional inferences not denote the
knowledge-level parallelism, effect of adding "a-valentine" to give(John, Mary, x)?

As Hummel & Holyoak point out, SHRUTi also uses Halford also suggests that given R(a,b,c), it is meaningful
"distributed representations." An n-ary predicate is rep- to talk about R(a,b) in TPA. But does the ability to deal
resented by a collection of n + 2 nodes and hence a with partially instantiated relations not confer the same
dynamic fact is a pattern of activity distributed over power on siiRuri? Finally, Halford indicates that TPA
several nodes. SHtRuTi does use a localist representation supports the retrieval of any argument filler given the
of arguments (note, however, that although each role is predicate and the remaining argument fillers. This seems
localized in the abstract representation, it is physically to correspond to sHrfts ability to answer wh-queries
distributed, because it is represented by acluster ofcells). (see sect. 4.7).
The (abstract) localization of roles is essential in any
system that must represent a large number of dynamic R3.2. SHRUrl and the classical approach. Several commen-
bindings simultaneously. Indeed, it is their localization tators see the ghost ofclassical Al in our model (Dawson &
that enables SHRUTI to represent and propagate simul- Berkeley, Dorffner, and Carson). Dawson & Berkeley
taneously a large number of dynamic bindings and to also see SHRUTI as a mere implementation of classical
exhibit knowledge-level parallelism, ideas. Our response has two parts. First, we believe that

As far as entities are concerned, the encoding of an any model of cognition will have to exhibit some of the
entity can be viewed as a distributed pattern over the functionality identified by the classical approach. We
collection of nodes that make up the type hierarchy. Ifone cannot simply discard the notions of systematicity and
augments the representation of types (concepts) with compositionality - what we need to do instead is discard
attribute values (see Shastri 1988a; Shastri & Feldman the view that systematicity and compositionality have to
1986) then the "distributed" nature of the rep. .;sentation be retained in their unconstrained and unfettered form.
of each entity becomes even more apparent. Observe that The interesting challenge is to determine the appropriate
the key to encoding similarity is the use of shared repre- form and extent ofsystematicity and compositionality that
sentation and it is this sharing that gives distributed cognitive models must support. lfwe draw the line too far
representations the ability to capture similarity. The type to the left, we can end up with both a type ofassociationist
hierarchy also leads to such a sharing of representation glob that opponents of connectionism love to attack or
and, hence, allows SHturi to capture similarity. models that work on toy examples but do not seem to have

We agree with Dorffner that a reflexive-reasoning any hope of scaling to larger problems. If we draw the
system should have a more fluid and dynamic view of boundary too far to the right we can end tip with attempts
compositionality. It should be capable of zooming in and at building "connectionist" machines for doing list pro-
oit over representations eflortlessly at diflrent hlevels of cessing - an interesting exercise, but lacking any cogni-
granularity and of interpreting a situation/input relative tive significance (Tlouretzky 1990).11
to its cuirrent goals (re: l)orflner's exampl' of our inter- As Feldman, Ohlsson, Martin, Strong, and Oaksford
pretation shifting from "a blob," "a ladd(er,- to "a Chair on a & Malloch point out, ours is a difttrent approach. We are
table"). But we fail to see what this ability has to do with trying to build a model of'refl'exive reasoning that respects
(listrilbt(d rel-slmtations pir se. I)orillier also advo- the e'sseitial coistraiits imposed by\l the uindvrlyinu coiui-
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putational architecture but that at the same time has (1) than once in the antecedent. H611dobler mentions a
considerable representational and inferential power, (2) a stronger restriction that covers all variables occurring in
limited yet potentially adequate ability to deal with sys- the antecedent.
tematicity and compositionality, and (3) requisite scaling We are not surprised by H611dobler's observation that
power. as far as deductive reasoning is concerned, sHtrnri's

The comment that sHRuTi is a mere implementation of inferential power is a special case of some more general-
the classical approach simply misses the point. OhIsson purpose theorem prover. This observation is of some
(para. 8), Martin (paras. 9-10), and Oaksford & Malloch value, but such a posteriori analysis should not be mis-
(paras. 1-4) spell out the relation between sHRUTI and the taken for the actual identification of an interesting and
classical approach. The key observation is that our "imple- significant special case of a general problem.
mentation" leads to a set of constraints and predictions
about the nature of reflexive processing that are unique to R3.4. Do static bindings suffice? It is argued b~y Cooper
this implementation. that dynamic bindings may not be relevant because rule-

Dawson & Berkeley offer three reasons why our model based reasoning may be the wrong paradigm for modeling
is a classical one. We have already responded to their intelligence. As pointed out in the target article and
comments about biological plausibility in RI. 10 and we in R2.2, however, the dynamic-binding problem tran-
will respond to their claim that our system has a central scends a narrow reading of "rule-based reasoning.
controller in R5.3. Let us briefly comment on the "squig- Cooper refers to case-based reasoning (CBR) and implies
gly line" Dawson & Berkeley point to as the "smoking that CBR may not require dynamic bindings! A little
gun" that proves our system is a classical rule-based one! reflection, however, should make it clear that using a case
The squiggly line in Figure 19 was drawn to help the would require binding (on the fly) its roles/slots to the
reader delineate the representations introduced in sec- appropriate entities in the current situation. Further-
tions 3-4 from those introduced in section 5. By no stretch more, any but a trivial CBR system would have to propa-
of imagination does this line separate the "data structures gate some of these bindings in order to solve the indexing
being processed" from "the rules governing system infer- problem. Cooper argues that a full-fledged treatment of
ences." Both the type hierarchy and the rule base embody n-ary predicates may be unnecessary and counterproduc-
some data and some processing in the traditional sense of tive. We agree! Indeed, sR-uri does not ofler such a
these terms. We strongly urge Dawson & Berkeley to universal treatment (see sects. 4.9, 6, and 8).
reread section 3.4, paragraph 5, and the article by Hat- Cooper also suggests that we need only solve the
field (1991) cited therein, binding problem for feasible pairing of roles and fillers;

because the number of feasible role-filler pairing is not
R3.3. On the Al paradox. Our claim that we have taken a astronomical, it may be possible to dedicate nodes to each
step toward resolving the Al paradox (see Abstract) is of the feasible bindings. He concludes accordingly that it
contested by H611dobler, yet nothing in his commentary may be possible to get by without dynamic bindings. Ile
contradicts the basis for our claim, namely, that work in Al seems to be making a crucial error, however, because a
has not offered a credible account of how humans can system must not only deal with feasible but also nonfeas-
rapidly perform a wide range of reasoning in time that ible ones. Consider the sentence "The Grand Canyon
does not seem to increase with the size of their knowledge gave a computer to a monkey!" Surely the bindings
base. The results in Al have either been negative and between giver and Grand Canyon are not feasible in
shown that even very "simple" types of reasoning are Cooper's sense of the word. Yet we have no trouble in
intractable, or they have offered characterizations of creating this binding and answering questions about who
".complex" reasoning classes that require too much space gave what to whom. So we are quite capable of repre-
or time, or produced positive results that are about overly senting essentially arbitrary pairings between concept/
restrictive forms of reasoning (see sect. 9 for references). instances and conceptual roles without requiring repeti-
So if our predictions about reflexive reasoning were to tion, attention, and reflection.
hold, we would indeed have taken a step toward resolving
the Al paradox by showing that there exists a class of R4. Learning
reasoning that can be performed with requisite efficiency
and that is powerful enough to cover a significant range of A number of commentators point out that we have not
reasoning that people can perform reflexively, investigated learning in detail. We agree. We also agree

Hoildobler graciously observes that our "logic" has with Martin that pursuing learning within siinrri will
some remarkable features but he remarks that its expres- provide an additional set of constraints that miay lead to
sive power is "fairly limited" from a "logical point ofview. " further insights into the nature of reflexive reasoning. In
lie does not seem to realize that the fundamental issue is the target article we mentioned that we have a plausible
not how powerful or weak reflexive reasoning is from a solution to the problem of one-shot learning of facts. We'
logical point of view. If it turns out that such reasoning are also pursuing the problem of incremental rule learn-
corresp)ond(s to a"simnple" logic. so be it! 11611dobler seest: ing (see belowv). As Hampson points out, the integratioli of
to want to hold mis responsilble for Al researchers' fitilurc to rules into the LTK B can be a slow and gradual pro'css
investigate "'simnpler" logics. requiring comsideral)lc ext)osure' to a varietv of r( hevanl

We appreciate lo611dobler's pointers to related work on situations. This is to be expected, because to learn a rih'
antoinated theorem proving. Not'. how(evr, that the involve's learning th(e coirect argunimllet mlappingi s we(ll as
result I l1l1dohler discusses involves a sti•micr restriction the associated (r fuinctions (see sect. 5.5) to ('mlo(l\ (l•e
in the foirm of ruh's than \hl t(a we impose in section .4.9. ap)rl)ririateoc'ss of thIesc iiapping• (Cottrell aptl n'1t1'.1

(Our rt'strictioll (coYmnceirls 11hk \iaiialljcs tliat occur nwor to the (r finllctiojs as "('nlia , filters).
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Grossberg summarizes work done by him and his
colleagues on a family of learning systems that can extract
rules from data. We would like to evaluate the power of Ps 1
these systems in the context of a SHRuri-like reflexive- Ms11 A...._ _ __ .. / _
reasoning system. a418211M

Cottrell argues that using the pattern containing infer- ,mad d =-

ence alternative (PCIA) discussed in section 9.4 will lead d

to a number of advantages in learning rules and semantic
filters associated with rules. He does not realize that the
temporal synchrony approach used in SHRLrl can support ,r d John
all the advantages he cites. This is illustrated in Figure
Rl, which makes it clear that semantic filters as well as
covariance constraints can be learned within the temporal
synchrony approach (a more detailed description of this
approach will appear in Shastri 1993b). Figure RIa shows
three groups of nodes. The one on the bottom left is the
collection of all the predicate nodes. For simplicity, we
have only shown role (argument) nodes of predicates and o piwt

omitted the enabler and collector nodes. The group on ,V
the right consists of all the type or feature nodes. As
discussed in R3. 1, the representation of each entity can
be viewed as a pattern of activity over the collection of Figure Rib. The input and target patterns for the training
type or feature nodes. The collection of nodes on the top is situation: "John walked into a wall" (antecedent), "John got hurt"
the "hidden" structure consisting of a layer of T-or nodes (consequent).
sandwiched between two layers of p-btu nodes. The'
arrows indicate that nature of connectivity. Notice that
the role and feature nodes feed into the bottom layer of clamped to the input pattern shown in the figure (the

the hidden structure and the top layer of the hidden input need not be periodic) and the desired behavior of

structure feeds back into the role nodes. The interconnec- the network would be the (suitably delayed) activation of

tion pattern in the hidden structure is as shown: the the patient role of hurt as specified in the target pattern.

bottom layer feeds into the second and third layer and the One could use a suitable learning algorithm to learn the

second layer feeds into the third layer. The proposed correct weights in the network to encode the necessary

connectivity can be shown to support the learning of rules with the appropriate semantic filters. The above

type/feature preferences/restriction involving individual interconnection pattern shculd also make it clear that

roles as well as multiple roles. co.,trary to Cottrell's (para. 7) and Garson's (para. 6)

Figure Rib shows the input activity for a particular suggestions, the learning of rules does not require one-to-

situation (John walked into the wall) and the associated one connectivity between all predicate role nodes.

target activity (John got hurt). The role nodes will be

R5. Miscellaneous issues

R5.1. Grounding. As pointed out by Diederich, we have
not addressed ht.w the meaning of our representation is
ultimately grounded (Harnad 1990). We recognize that
grounding is central to the notion of representation, but
our concern in this target article has been with issues such
as expressive power, inferential adequacy, and scalability
of a biologically plausible representation and reasoning
system. We will have to face the issue of grounding if we
want to start ascribing real (not imputed) meaning to
nodes and circuits in SHRUTI.

R5.2. Encoding of long-term facts and the IS-A hierarchy.
In paragraph 2 Strong argues that the encoding of a
partially instantiated fact like give(John, Susan, x) vio-
lates the closed word assumption (CWA). lie writes that

"-.o eo •0 0o... O 0'0 given the fact give(John, Susan, x) the CWA implies the
, M1 answer to the question gito(John, Susan, Car7) should be

Pmcat.erotenod" featurenode t(). We agree; indeed, this is exactly how the system

Figire ilr ..()eritw of the network structures required for responds. So we do not see why he believes that siTI rn's

learning contcxt-siis.tive rules. The hidde, structure would response is inconsistent with the C\VA. Strong is right,
dc,(e:lop the appropriate scinantic filter fir the propagatio of however, about the encoding of a partially instantiated

iiiidiiigs h•etweent pIrvicate roles. Interconnections b)etweeC fact using the IS-A hierarchy. The reasoning systeni aug-
colh.ctions of ce.lls are indicate(l by the dark arrows. All links are mnited with the IS-A hierarchy e. -odes a fact such as
wv.it('tv(l aI(l rio(hls ha;,xie -li.shohl.s assixiatei with them. 3x:Thin, gite(Jo/hn, Susan. x) exactly as he describes.
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Palm seems to be confusing long-term facts with controller in a parser! They also lail to retognize that
medium-term facts. The intended function of what we instead of a central controller s|iturri uses "distributed
have called "long-term facts" is indeed the essentially control mechanisms' as part of its representational ma-
permanent recording of a situation (a static set of bind- chinery. As explained in section 9. 1, these mechanisms
ings). Some of this confusion can be resolved by recogniz- obviate the need for a central controller that directs the
ing that (1) only situations that are significant end up activity of every node at each time step.
being encoded as long-term facts and (2) long-term facts
are not entirely "forgotten" when the situation they en- NOTES
code ceases to be true. Ir-t..ad, they ,re tagged in some 1. SiiituTI is not an acronym but a Sanskrit work which refers
manner to indicate that -.-,"y are no longer the case. To to the oral tradition of communicating knowledge.
draw an analogy, when long-term facts cease to be true, 2. Bienenstock (personal communication) had als ad% ocated
they do not just disappear; they continue to be around as the use of aperiodic synchronous iatisit over perioldKi actis et,

*'ex-long-term facts." 3. Lado et al. (1992) report finding synchronous oscillation

"Palm seems to have m r in the motor and sensory' cortices during the execution ofsimmiple
alemisinterpreted the encding of hand movements by analyzing magneto-encephalographV data

long-term facts in Figure 12, inferring that the enabler, 4. As argued in Thoqrp and Inmert (1989). there are about
collector, arid argument nodes are duplicated for each 100,000 distinct objects that can he named rapidly by people.
long-term fact. This is not the case. As we explained in Hence the number of potential argument fillers is going to Ik' at
section 3.3, for each n-ary predicate there is only one least 100,000 if not more.
enabler, one collector, and n argument nodes. All the 5. Note, however, that if one is only seeking local rather than
long-term facts pertaining to this predicate share these global consistency then it is possible to seek local support and
"general" nodes. So in Figure 12 if we were to add the find a locally consistent hypothesis in a reflexive manner. An
long-term fact buy(Jackie, Car7) we would only add one example of this may be found in the abductive reasoning system

additional node, namely, a fact node. described by Ajjanagadde (1991).

The above confusion also leads Palm to think that 6. There are notable exceptions, such as the approach ex-
pounded by Newell (1990; see also multiple biok review, BBS

multiple predicate banks introduced in section 6 are 15(3) 1992). Feldman, although not a cognitive psychologist, has
required for storing multiple long-term facts (end of para. long emphasized that the biological architecture places strong
8). This is not the case. It turns iut that multiple predicate computational constraints on the nature of cognitive models. A
banks have been posited for representing multiple dy- good example of this is his well-known"hundred step" argument
namic instantiations of a predicate, not multiple long- (Feldman & Ballard 1982). [See also Feldman's "Four Frames
term facts. Suffice" BBS 8(2) 1985. ]

The suggestions by Palm about encoding IS-A and 7. In the case of a quer', the possible inferences correspond

predicate hierarchies via set containment are well taken, to the possible derivations of the query. As in the forward case.

We see two potential problems with his proposal: (1) only derivations that do not violate WMRR capacity and depth

representation of multiple dynamic predicate instances bounds are possible.
8. These types of rules have bx'en proposed for linking syntac-

and (2) encoding of exceptional properties/features of tic structures with conceptual structures within a snrmirri-likc
concepts. Palm also comments about encoding soft rules framework (Shastri 1992).
and the potential problem with using rate of firing to 9. It is possible to incorporate certain types of rules into our
encode confidence. He seems to have overlooked the behavior quite rapidly. Consider "hit the left button if you see an
discussion in section 5.5 and note 26. X on the screen." Such rules, however, seem to involve a fairly

direct mapping between perception and action.

R5.3. sintu'n and a central controller. Overhasty dismis- 10. This would be a much longer time than the time a fact
may stay active in the WMRR via temporal synchrony but much

siveness seems to have led Dawson & Berkeley and shorter than the time a fact may stay in medium-term memory.
Touretzky & Fahlman to confuse a simple means of 11. The use of distributed representations and coarse coding
communicating a query to SHRUTI and recovering the by a model does not imply that the model is cognitively sig-
answer with a central controller (see paras. 2 and 10, nificant.
respectively). They do not seem to understand that unless
we develop a complete system which accepts sensory
(speech/visual) input and produce, "h/motor out-
put, we need to specify a way of cc i iting with the References
system. We fail to see how posing to SHrUTI by
activating the argument and filler nodts and the enabler Letters a and r appearing before authors' initials refer to target article and
of the query predicate and thereafter waiting for the response respectively.
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Reflexive Reasoning with Multiple Instantiation
in a Connectionist Reasoning System with a
Type Hierarchy

I,

D. R. %IANI & LOKENDRA SHASTRI

We describe a hybrid knowledge representation and reasoning' system that integrates a
rule-based reasoner with a type hierarchy and can accommodate multiple dynamic
instantiations ti predicates. The system - which is an extension of the reasoner
described in Shastri and Ajjanagadde (1990)-maintains and propagates variable
bindings using temporally synchronous (i.e. in-phase I /iring of appropriate nodes, and
can perform a broad class of reasoning with extreme efficiencv. 7he type hierarchy
allows the system to encode generic facts such as 'cats prev on birds' and rules such as
"if x preys on N. then y is scared of x' and use them to infer that Tweety the canary
is scared of Sylvester the cat. The system can also encode qualified rules such as 'if an
animate agent collides with a solid object then the agent gets hurt'. The ability to
accommodate multiple dynamic instantiations of any predicate allows the system to
handle a much broader class of inferences, includinsg those in'olvingq transitivitY and
bounded recursion. The proposed system can answer queries in time which is indcpen-
dent of the size of the knowledge base, and is only proportional to the length qf the
shortest derivation ojf the query.

KI;YWORDS: Binding problem, connectionism, knowledge representation, multi-
ple instantiation, reflexive reasoning, type hierarchy.

1. Introduction

Connectionist networks, or neural networks. have primarily been used to model
'low-level' cognitive phenomena including visual pattern recognition, speech

processing and effector control.' For these tasks, connectionist networks offer
several advantages: massive parallelism, noise- and fault-tolerance, graceful
degradation and trainability. On the other hand, classical artificial intelligence
(Al) or symbol-processing systems have primarily focused on 'high-level" pro-
cesses involving 'reasoning' using rules and manipulating abstract knowledge.
Though symbol-processing systems are capable of knowledge representation and
rule-based reasoning, they have had the disadvantage of not being scalable-these

1). R. Mani, Department of Computer and Information Science, University of Pcnnsvivania. 2M(
South 33rd Street. Philadelphia, PA 19104, USA. L. Shastri, International Computcr SLiencc

Institute, 1947 Center Street, Suite 600, Berkeley, CA 94704. USA. E-mail: manila linc.cis.upcnn.

cdu and shastri a iLcsi.b,'rkelev.cdu.
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systems become slow and unusable as tile size of the knowledge base increases.
This is especially true when modeling human cognition. Htybrid architectures arc
an integration of' the notions of neural and sy mbolic processing systems in an
attempt to get the best of both worlds.

We describe a knowledge representation and reasoning system which com-
bines notions from classical AI and connectionism. The motivation for developing
such a reasoning system, however, is not to *simulate' classical symbol-processing
using connectionism. Instead, the effort is motivated bv the belief that an
integration of neural and symbolic systems would result in models that retain the
essential representational and inferential powers of classical systems, and at the
same time constrain and limit the reasoning system in cognitively plausible ways.
Furthermore, the simplicity, efficiency and massive parallelism of connectionist
models combined with the symbol-processing capabilities of classical Al systems
would lead to an efficient and scalable reasoning system.

A crucial factor in the failure of classical symbol-processing systems at modeling
human cognition is their use of general-purpose paradigms. From a reasoning
perspective, the use of computationally intractable techniques like general-purpose
theorem proving will not lead to efficient, rapid and tractable reasoning systems.
To make reasoning tractable, constraints and restrictions will have to be imposed
.n order to limit the reasoning capability of the system in several ways. An ad hoc
choice of these constraints will result in a system which is tractable, but probably
not very useful. By using connectionism as our underlying paradigm, and by turning
to cognitive science, psychology and neuroscience for a realistic set of constraints,
we hope to develop a model of tractable reasoning that not only retains the essential
representational and inferential powers of classical systems, but also limits the
resulting system in cognitively plausible ways.

In developing a connectionist knowledge representation and reasoning system,
one of the key issues that needs to be addressed is the dynamic variable binding
problem (Feldman, 1982; van der Malsburg, 1986). Shastri and Aijanagadde
(1993a, 1990; Aijanagadde & Shastri, 1991) have described a solution to the
variable binding problem and shown that the solution leads to the design of a
connection~st reasoning system that can represent systematic kvowledge involving
n-ary predicates and variables, and perform a broad class of reasoning with
extreme efficiency. The system can store both specific situations jacts) and
general systematic relationships in the domain rules). The time taken by the
reasoning system to draw an inference is only proportional to the length of the
chain of inference, and is independent of the number of rules and facts encoded by
the system. The reasoning system maintains and propagates variable bindings
using temporally synchronous-i.e. in-phase-firing of appropriate nodes. The
solution to the variable binding problem allows the system to maintain and
propagate a large number of bindings simultaneously as long as the number of
distinct entities participating in the bindings during any given episode of reason-
ing remains bounded. Reasoning in the proposed system is the transient but
systematic flow of rhythmic patterns of activation, where each phase in the
rhythmic pattern corresponds to a distinct entity involved in the reasoning
process, and where variable bindings are represented as the synchronous firing of
appropriate argument and entity (filler) nodes. A fact behaves as a temporal
pattern matcher that becomes 'active' when it detects that the bindings corre-
sponding to it are present in the system's pattern of activity. Rules are intercon-
nection patterns that propagate and transform rhythmic patterns of activity across
relational structures.
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The system attempts to model efticient, cltortless and spontaneous reasoning
over a large body of knowledge. Such reasoning has been described as reflexive
reasoning tShastri, 1990). The system as described in Shastri and Ajianagadde
S1990), however, has some limitations. In this paper. we overcome some of these
limitations by extending the basic system so that it can ctlectiveiv draw a wider
class of inferences. In particular, we describe how i the rule-based component
can be interfaced with a type hierarchy and 1 iii the inferences drawn by the
reasoning system may involve multiple dynamic instantiations of the same predi-
cate (Barnden & Pollack, 1991, Dver. 1991). The extended system continues to

be scalable and can reason rapidly with large knowledge bases. The work also
leads to several predictions which have cognitive and psychological implications,
and offer fresh insight into the nature of reflexive reasoning ý Sections 5.6 and
5.7).

Several other researchers have proposed connectionist knowledge representa-
tion and reasoning systems using a variety of techniques Section 6). These
include the use of dynamic connections Feldman, 1982,, parallel constraint
satistaction ITouretzky & Hinton, 1988), position specitic encoding ,Barnden &
Srinivas, 1991 . tensor product representations ( )olan & Smolensky, 1989) and
signatures (ILange & Dver, 1989).

1. 1. The Need for a I'vpe Hierarchy

Human agents can reason with types, categories or concepts as effectively as they
can reason with instances or individuals. If we know that Sylvester is a cat and
Tweety is a canary, using the knowledge that 'cats prey on birds', we can

spontaneously infer that 'Sylvester preys on Tweetv'. Such inferences may be
performed efficiently' by organizing concepts into a type hierarchy so that we can
quickly traverse the hierarchy to find out facts like 'canaries are birds', 'birds and
cats are animals'. and so on. Though these inferences can be drawn without the
use of a type hierarchy (by encoding the type information directly in the rule
base), using a separate type hierarchy substantially improves reasoning efficiency,
especially since the inferences drawn in the type hierarchy are used repeatedly in
reflexive reasoning (also see Section 5).

Interaction between the type hierarchy and the rule base further facilitates
inferences that the reasoning system can draw. Continuing with the "'weetv-
Sylvester example, if we knew the rule 'if x preys on Y then Y is scared of x' we
can infer, using the type hierarchy, that "'lweety is scared of Sylvester. Moreover,
the type hierarchy allows rule-like knowledge of the form 'cats prey on birds' to
be encoded as the fact preys-on(Cat, Bird), and hence allows this knowledge not
only to be used during reasoning but also to be retrieved. Without a type
hierarchy, this knowledge would be encoded as the rule Vx, y cat(x) A bird(y) :
pregs-on(x,y). Consequently, it would participate in reasoning, but would not be
retrievable per se. A type hierarchy also allows the use of non-specific instances of
types and can therefore represent facts like 'there is a cat that loves all birds'.

The encoding of context-sensitive rules-where the firing of the rule is

dependent on the type of the role fillers-is facilitated by the use of types. For
example, if a ball hits a wall, we would not worry about the ball getting hurt. But
we would have no difficulty in inferring that John would be hurt if he ran into a
wall. Implicitly, we could be thought of as applying the rule 'if an animate agent
collides with a solid object, the animate agent would get hurt'. This notion can be
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formalized by the use ot typed variables, and the rule stated as: vx:animate.
y:solid-obi collide(x,y) = hurt(x).

In order that our reasoning system be able to reason eflectively in the
situations mentioned above, we need to augment the rule base with a type
hierarchy. A brief outline of how this could be done was described in Shastri and
Ajjanagadde k 1990). In this paper, we describe a detailed solution to the problem.

1.2. Die Need.O fr 1hltiplpe )\,namwc Instantiations ).I Predicates

The need for multiple instantiation arises in two situations. The simpler of the
two cases-multiple dynamic instantiations of concepts in the type hierarchy-
arises when two obiects of the same type are being represented. If the system has
simultaneously to represent 'cats are animals' and 'birds are animals' in its state
of activation, the concept representing animal will have to fire in synchrony with
both the cat concept and the bird concept. The more general problem of
representing multiple d'namic instantiations of predicates arises during reflexive
reasoning as brought out by the lollowing examples. If we know that Mary is
John's spouse, we would not have any difficulty in realizing that John is Mary's
spouse. In other words, given spouse-of(MaryJohn) we can reflexively answer
"yes' to the query spouse-of(John, Mary)? Such behavior would require the
spouse-of predicate to be instantiated twice: once with spouse-of(John,Mary)
and again with spouse-of(Mary,John). As another example. consider the situa-
tion in which we know that Mlary is older than John's father. If we now hear that
John married Mary, we can instantly sense the unusualness of the situation, since
Mary is obviously much older than John. But the fact that ,larv is older than

John has not been explicitly stated. This would suggest that we may have inferred
older-than(Mary,John) using the facts older-than(Mary,John's-father) and
older-than(John's-fatherJohn),; and the transitive nature of the older-than
predicate. To model this scenario in the reasoning svstem, we would need
simultaneously to represent three instantiations of older-than. Similarly, we can,
without conscious deliberation, infer that John may be jealous of Tom if we know
that John loves Mary and Mary loves Tom. Here again, we would need the ability
to represent multiple instantiations of the loves predicate to capture the situation.
Thus, a system tbr modeling reflexive reasoning should be capable of representing
multiple instantiations of predicates.

The system described in Shastri and Ajjanagadde (1990) has the limitation
that any predicate in the reasoner can be instantiated at most once.' In this paper,
we describe how this system can be extended to deal with multiple instantiations
of predicates in the reasoner as well as multiple instantiations of concepts in the
type hierarchy.

1.3. Oz'erviciw

We begin with a brief overview of the basic rule-based reasoning system ( Section
2). The realization of the type hierarchy is described in Section 3, followed by the
specification of the multiple instantiation mechanisms in Section 4. Section 5
describes how rules, facts and queries are handled by the extended reasoning
system. This section also describes the constraints introduced by the reasoning
system and their significance. We then conclude with a brief discussion of related
work, the relevance of this work and possible future research directions.
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(a)
rF;

Sfrom John from John
-from Mary

from Book I

give yg-o y

Sfrom BaillI

own
owner o-Obl

Mary

John 0

Booki 0
0 Ball I

can-sell 0
p-seller cs-obj

Figure 1. : a) An example encoding of rules and facts. l'hc network encodes the
following rules and facts: Vxy,z give(x,y,z) -• own(y,z), Vx,y buy (xy) >
own(x,y), Vx,y own(x,y) => can-sell(x,y), give(John,Mary, Book1 ), buy(Johnx)

and own(Mary,Ball1).

"Throughout the paper, we will mostly concern ourselves with backward reason-
ing, unless explicitly stated otherwise.

2. The Basic Rule-based Reasoning System

A brief description of the basic reasoning system is provided here. The reader is
referred to Shastri and Ajianagadde (1990) for a detailed exposition of the
reasoning system and its characteristics. Figure l a illustrates how long-term
knowledge is encoded in the rule-based reasoning system. [he network shown in
Figure l• ai encodes the following rules and facts:

Vx,y,z give(xy,z) => own(y,z)

Vx,y buy(x,y) , own(x,y)

Vx,y own(x,y) == can-sell(x,y)

give(John, Mary. Book 1)

buy(John,x)

own(Mary,Ball1).
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(b) c:can-sell

c:own
c:give

F1
e:give

g-obj
recip

e:buy __V V V _V

b-obj
buyer
e:own
o-obj ~il

owner
e :can-sell

Bookl1r jf
cs-obj FjJ
Mary ----

p-seller
input to e:can-sell

input to cs-obj
input to p-seller
input to Booki

input to Mary

0 1 2 3 4 S 6 7 8 9 time

Figure 1. h b Activation trace for the query can -sell (Mary, Book 1)? ' 'Can Mtary
sell BooklI?' . The inputs ' to nodes e:can-sell, cs-obi, p-seller. Book i and Miary)
needed to pose the query arc also shown. In oither activation trace diagrams to

follow, these inputs will not be explicitly shown.

Tlhe rule Vx~y,z give(x,y,z) :-~ own(y,z) states that 'iI* x gives z to v. then -v owns
z'l'he other two rules are interpreted similarly. TI he facts give(John. Mary, Bookl)

and own (Mary, Balli ) represent 'John gave Slary BookI' and 'Ntary bought Hall IX
respectively, while buy(John~x) states that 'John bought smincthi,ýc.

'rhe encoding of rules and facts makes use of several types of nodes see
Figure 2): ;)-btu nodes (depicted as circles), --and nodes depicted as pentagons)
and z-or nodes (depicted as triangles). T'hese nodes have the following idealized
behavior. If p-btu node A is connected to another ;)-btu node /I. then the activity
of node 11 w~ill synchronize with the activitv' of node .A. In particular, a periodic
firing of A will lead to a periodic and in-phase tiring of /I.' We assume that p-htu
nodes can respond in this manner as long as the period of firing, ;7. lies in the
interval Ilmrn' 7tT~ad '[his interval can be interpreted as defining the f'requency
range over which p-btu nodes can sustain a synchron ized response. For a
discussion oif biologically motivated values for these parameters, see Shastri and
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in

p-btu 0 out

T-and out F_ _

in

r-or A LJLA h
out

period
3!

Figure 2. Input-output behavior for the p-btu, r-and and r-or nodes used in
the reasoning system. p-btu ( ) and r-and ( L) nodes can fire with any period in

the interval [Irn... ,tmux]. r-or t '. ) nodes always tire with period 7r.....

Aijanagadde i1993a. A r-and node behaves like a temporal AND node, and
becomes active on receiving an uninterrupted pulse train. On becoming active, a
r-and node produces a pulse train similar to the input pulse train. A r-or node.
on the other hand, becomes active on receiving any activation. its output is a pulse
whose width and period equal . Figure 2 summarizes the behavior of these
nodes for the idealized case of oscillatory inputs.

The maximum number of distinct entities that may participate in an episode
of reasoning equals L7irtwJ where n is the period of oscillation. We define (t, to be
the width of the window of synchronization--nodes firing with a lag or lead of
less than w12 would be considered to be in svnchronv. The encoding also makes
use of inhibitory modifiers-links that impinge upon and inhibit other links. A
pulse propagating along an inhibitory modifier will block a pulse propagating
along the link it impinges upon. In Figure l(a), inhibitory modifiers are shown as
links ending in solid circles.

Each entity in the domain is encoded by a p-btu node. An n-ary predicate P
is encoded by a pair of' r-and nodes and n p-btu nodes. one for each of its n
arguments. One of the r-and nodes is referred to as the enabler. c:P, and the other
as the collector. c:P. In Figure l a), cnablers point upwards while collectors point
downwards. The enabler e:P becomes active whenever the system is being
queried about P. On the other hand, the system activates the collector c:P of a
predicate P whenever the system wants to assert that the current dynamic
bindings of the arguments of P follow from the knowledge encoded in the system.
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A rule is encoded h\ ct'tiectcimi the collector o thile antecedent predicate t) the
collector of the consequent predicate, the enabler of the consequent predicatc to
the enabler ot the antecedent predicate, and by connecting the arguments of the
consequent predicate to the arguments tif the antecedent predicate in accordance
with the correspondence between these arguments specified in the rule. A fact is
encoded using a r-and node that receives an input from the enabler of the
associated predicate. [his input is modified hy inhibitory modifiers from the
argument nodes of the associated predicate. If an argument is bound to an entity
in the fact, then the modifier from such an argument node is in turn modified by
an inhibitory modifier from the appropriate entity node. [he output of the r-and
node is connected to the ,ollector of the associated predicate. Figure I a) shows
the encoding of the facts give(John,Mary, Bookl), own(Mary,Balll) and
buy(Johnx). Note that the fact buy(John,x) would be triggered only if the
second argument of the buy predicate is unbound, i.e. the object which John
bought is unspecified.

2.1. Th1 In/crence P~rocess

Posing a query t) the system involves specifying the query predicate and the
argument bindings specified in the query. In the proposed system, this is done by
simply activating the relevant nodes in the manner described below. Let us
choose an arbitrary point in time-say, t,,-as our point of reference for initiating
the query. We assume that the system is in a quiescent state just prior to t,. The
query predicate is specified by activating the enabler of the query predicate with
a pulse train of width and periodicity it starting at time t,,.

The argument bindings specified in the query are communicated to the
network as follows. Let the argument bindings in the query involve n distinct
entities: c .... c,,. With each c'. associate a delay ), such that no two delays are
within (,t of one another and the longest delay is less than ;t - v,. As mentioned
earlier, (.) is the width tit the window of synchrony and it is the period of
oscillation. lEach of these delays may be viewed as a distinct phase within the
period t,, and t,, + ir. Now the argument bindings of an entity c, are indicated to
the system by providing an oscillatory spike train of periodicitv iT starting at
I,, + 6,, to c, and all arguments t) which c, is bound. This is done for each entity
c, (1 f i ! it) and amounts to representing argument bindings by the in-phase or
synchronous activation of the appropriate entity and argument nodes.

We illustrate the reasoning process with the help of an example. Consider the
query can-sell(Mary, Bookl)? (i.e. 'Can Mary sell Booki?', This query is posed
by providing inputs to the entities Mary and Book1. the arguments p-seller and
cs-ob,. and the enabler e:can-sell, as shown in Figure 1, b). Mary and p-seller
receive in-phase activation and so do Book1 and cs-obj. Let us refer to the phase
of activation of Mary and Booki as p, and p., respectively. A.s a result of these
inputs, Mary and p-seller will fire synchronously in phase 1), oft every period ot
oscillation, while Booki and cs-obi will fire synchronously in phase p, of every
period of oscillation. The node e:can-sell will also oscillate and generate a pulse
train of periodicity and pulse width ir. The activations from the arguments
p-seller and cs-obj reach the arguments owner and o-obi of the own predicate.
and, consequently, starting with the second period of oscillation, owner and o-obl
become active in p, and p,. respectively. At the same time. the activation from
e'can-sell activates e:own. The system has, essentially, created dynamic bindings
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for the arguments of predicate own. Mary has Ibeen hound lo the argument
owner, and Booki has been bound to the argument o-obi. These , new\ly created
bindings in conjunction with the activation oit e:own can he thought kof .1,

encoding the query own(Mary,Bookl )? 'i.e. ')oes .\Iarv owkn ilookl?". The
r-and node associated with the fact own(MaryBall ) does not match the query
and remains inactivc. The activations trom owner and o-obj reach the arguments
recip and g-obj of give, and buyer and b-obj of buy. respectively. Thus.
beginning with the third period ot oscillation, arguments recip and buyer become
active in ph, while arguments g-obj and b-obl become active in p.. In essence, the
system has created new bindings for the predicates give and buy that can bc
thought of as encoding two new queries: give(x, Mary, Bookl )? i.e. *Did sopneimi
give ,Mary |lookl?'" and buy(MaryBookl)? Observe that now the r-and node
associated with the tact give(John.Mary, Bookl )-this is the r-and node labeled
FI in Figure l a,--becomes active as a result Of uninterrupted activation from
e:give. The inhibitory inputs from recip and g-obP arc blocked by the in-phase
inputs from Mary and Book1. respectively. [he activation from this r-and node
causes c:give, the collector of give, to become active. [he output fro~m c:give in
turn causes c:own to become active and transmit an output to c:can-sell.
Consequently, c:can-sell, the collector totf the query predicate can-sell, becomes
active (refer to Figure l b)) resulting in an atfirmative answer to the query
can-sell (Mary, Bookl )?

3. The Type Hierarchy

3. 1. Overvicw,

Figure 3(a) gives an overview of the reasoning svstem augmented with a type
hierarchy. The rule-based part of' the network encodes the rule Vx,y preys-
on(x,y) => scared-of(y,x) i.e. 'it x preys on Y, then v is scared of x"., and the
facts Vx:Cat, y:Bird preys-on(x,y) and Ix:Cat Vy:Bird Ioves(x,y). l'he former tact
is equivalent to preys-on(Cat,Bird) and the amounts to *cats prey on birds'. T'he
latter amounts to 'there is a cat that loves all birds'. The network on the right in
Figure 3(a) encodes the following is-a relationships: is-a(Bird,Animal), is-
a(Cat,Animal), is-a( RobinBird), is-a(Canary, Bird), is-a(Chirpy.FRobin), is-
a (Tweety, Canary) and is-a (Sylvester, Cat).

3.1.1. hnterpretng ',ficts. Facts involving typed variables are interpreted in the
following manner:

"* A typed, universally quantified variable is treated as being equivalent to its
type. Also, any entity directly specified in a fact is treated as a substitute for a
typed universal variable.' Thus. Vx:Cat, y:Bird preys-on(xy), Vx:Cat preys-
on(xBird) and Vy:Bird preys-on(Cat,y) arc all encoded as preys-on(CatBird).

"* A typed, existentially quantified variable is encoded using a unique sub-
concept of the associated type. Thus. in Figure 3(a), Ix:Cat Vy:Bird loves(xy)
is encoded as Ioves(Cat-1,Bird), where Cat-1 is assumed to be a unique
instance of Cat."

The example in Section 3.4 clarifies these notions. Note that this scheme deals
only with existential variables outside the scope of universally quantified v-ari-
ables.
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(a)

lovesRai Slese

preys-onrF1

predat-or Bwey Cirdy

TypcHerach

Figure 3. (a) Interaction between the reasoner and the type hierarchy. The rule
base encodes the rule Vx,y preys-on(x,y) =.scared-of(y,x) and the facts
Vx:Cat, y:Bird preys-on(x~y) and 3x:Cat Vy:Bird Ioves(x,y). TUhe type hierarchy
encodes the following is-a relations: is-a(Bird,Animal), is-a(CatAnimal), is-
a(Robin,Bird), is-a (Canary, Bird), is-a (Chirpy, Robin), is-a (Tweety, Canary) and

is-a (Sylvester, Cat).

I-or now, let us assume the following: each type or instance is encoded as a
j)-btLI node, each conceptual is-a relationship such as is-a(A,B) is encoded using
two connectionist links-a bottom-up link from A to ]I and a top-down link trom
/I to A; and that the top-down and bottom-up links can be enabled selectively by
built-in control mechanisms.

'rhe time course of activation t'(r the query scared -of (Tweety, Sylvester)? ý Is
rweetv scared of Svlveste r?') is given in [~igure 3ý b). The query is posed by
turning on e:scared-of and activating the nodes Tweety and Sylvester in svn-
chronv with the first ,scaree) and second (scarer) arguments )f scared-of.
respectively. Trhe bottom-up links emanating from Tweety and Sylvester are also
enabled. In the trule base. activation from scaree spreads to prey, the second
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(b)
c:scared-of /_

c:preys-on

F1

Bird _________ _

e preys-on

predator

Cat-

e~scared-ot

scarer

scaree

Sylvester

Tweety

Figure 3. b) T[race of spreading activation for the query scared-
of (Tweety, Sylvester)? (Is *Uweety scared of Svlvesterý'ý

argument of the preys-on predicate. Similarly, the activation of scarer spreads to
predator. At the same time. e:scared-of activates e:preys-on. As a result, the
initial query scared - of (Tweety. Sylvester)? is rephrased as preys-on (Syl-
vester,Tweety)? , 'Does Sylvest er pre% on Twecet%?'i Cioncurrentlv with activa-
tion spread in the rule base, activation also propagates in the ty pe hierarch%-. [his
causes Canary and Bird to tire in synchrony with Tweety. and Cat in synchrony
with Sylvester. T[he net result of* activation propagation in the rule base and type
hierarchy is to transform the query scared -of (Tweety, Sylvester)? into the query
preys-on (Cat, Bird)? ( refer to F-igure 3(b)). The latter query matches the stored
fact preys- on (Cat, Bird) and leads to the activation of c:preys-on. In turn,
c:scared-of becomes active and signals an affirmative answer to the query.

3.2. Two T'echanical Problemns in Rcalizin~g a Ty~pe IfierarchY

T[here are two technical problems that must be solved in order to integrate the
type hierarchy and the rule-based component.

F~irst, the encoding of the is-a hierarchy should be capable of representing
multiple instantiations of' a concept. I-or example, in the query discussed above,
the concept Animal would receive activation originating from Tweety as w~ell as
Sylvester. We would like the network's state of activation to represent both *the
animal 'rweety" and the 'the animal Sylvester' T[his is problematic because fihe
p-btu node representing Animal cannot be in synchrony with both Tweety and
Sylvester at the same time.

Second, the encoding must provide built-in mechanisms fbr controlling the
propagation of activation in the is-a hierarchy so as to deal correctly with queries
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containing existcntallv and univcrsallv quantified variables. l'uis.

"* Activation originating from an instance or a concept ( that corresponds to a
universally quantified variable in the query should propagate upwards io all its
ancestors. Activation propagating upwards is equivalent to checking if the
relevant fact is universally true for some ancestor of C. in which case it is true
for all C.

" Itf the is-a hierarchv is a taxonomv, then activation originating from a concept
C that corresponds to an existentially quantified variable in the query should
propagate to the ancestors as well as descendants of C. A fact is true for some
object of type C if at least one of the following holds:

- [he fact is universally true for an ancestor of ('C. Activation traveling
upwards from C, checks this case.

- The fact is true for some descendant of (C. Activation traveling downwards
from C is meant to check this condition.

However, it the is-a hierarchy permits multiple inheritance, then the fact
would be true of C it it is universally true for an ancestor of a descendant of C.
"[his requires that the activation must also propagate to the ancestors of the
descendants of C. The multiple inheritance situation is illustrated by the
scenario in Figure 4: if 'all pets are lovable', then it also follows that 'there
exists some animal that is lovable'. Given the fact Vx:Pet lovable(x) ('all pets
are lovable'), to be able to give an affirmative answer to the query 3x:Animal
lovable(x)? ('Is there some animal that is lovable?"', we need to be able to
propagate activation to all the ancestors of the descendants of Animal. Thus, we
require activation originating from a concept (, which corresponds to an
existentially quantified variable, to propagate to its ancestors. descendants and
ancestors of descendants. Again, the example in Section .. 4 clarifies these
notions.

The next section proposes a solution to these problems.

3.3. Inplcmentintg the 7I''pc licrarchv

3.3.1. Representing entities, l-ach entity t i.e. type or instance) C is represented by
a group of nodes called the entity cluster for G. Such a cluster is organized as
shown in Figure 5(a). The entity cluster for C has k, banks of p-btu nodes, where
k1 , the type hierarchy multiple instantiation constant, refers ti the number of
dynamic instantiations a concept can accommodate. Each bank (,, consists of
three p-btu nodes: C,. (,,, C',.. Each C, represents a distinct , dvynamic; instantia-
tion of C. If this instantiation is in phase p. then C, tires in phase p. l'he relay
nodes C,, and C,, control the direction of propagation of the activation repre-
sented by C,. The C,, and C, nodes have a threshold 0 = 2. As shown in Figure
5(a), C, is connected to both (C. and (',. C, is linked to C,,. but not vice versa.
Directional control of propagating activation is exercised using a suitable modifi-
cation of the relay-node scheme discussed in Shastri 1998).

3.3.2. The type hierarchy switch T-switch). Flvcry entity C is associated with two
type hierarchy switches-a top-down T-switch and a bottom-up l'-switch. In
order to avoid confusion with switches introduced to handle multiple dynamic
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lovable t

Canary

Type Hierarchy

(b)
e lovable

Fl1

Canary F J j J
Pet

Bird

e lovable

lovable , arg

Animal

Figure 4. (a) Fragment of a type hierarchy with multiple inheritance, encoding
the fact Vx:Pet lovable(x). The type hierarchy encodes the Il'lowing is-a rela-
tions: is-a(Bird,Animal), is-a(BirdPet) and is-a(Canary, Bird). b, Activation
trace for the query 3x:Animal lovable(x)? 'Is there an animal that is lovahle;".

instantiatiors of predicates, we shall refer to the switches used in the type
hierarchy as T-switches. The T-switches, both of which are identical in structure.
control the flow of activation in the type hierarchy. l-ach T-switch has k, outputs.
Output, from the bottom-up T-switch connects to C, and (',t while the corre-
sponding output from the top-down T-switch goes to the C, and (",, nodes,
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inputs from
Gout super-concepts of Ccupdc vi

/ 7 top-down
switch

Representation for C

10 bottom-up switchi

(a) for super-concept
Cup

entity cluster for C C,

To top-down switch B Z
bottom-up for sub-concept

switch
for C

BB

inputs from
sub-concepts of C

(b)

A Aj
Representation

bottom-up switch tor A
switch for A

A

Figure 5. (a) Structure of' the entity cluster tfr C, and its interaction with the
bottom-up and top-down type hierarchy switches. "lThe • and I nodes have a
threshold 0 = 2. The multiple instantiation constant, k, 3. and represents the
number of instantiations that can be represented in any entitv cluster. h Encoding
of the is-a relation is-a(A,B). A bundle of k, wires is represented by a single link.
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1 -- 1 _k,. [he bottom-up l-switch has k, n ,, inputs %vhule the top-down
T-switch has k, u._p inputs, ",,, and Pi ,,, being thc number ot ,ub- :rod
super-concepts of (C. respectively. F-urthcr, there is also a lcedback from the C,
nGdes to both the i-switches see l:iigure 5 a, and I:igure 6 .

The interaction between the "I'-Nttches and the entity cluster Figure 5s a))
brings about efficient and automatic dynamic allocation of banks in an entity
cluster, by ensuring that:

"* Activation is channeled to the entity cluster banks only if the entity cluster can
accommodate more instantiations, the maximum number of instantiations is,
therefore, limited to k,.

"* Each C, picks up a unique phase, thus, new instantiations are always in a phase
not already represented in the entity cluster.

The architecture of the "l-switch with k, = I, is illustrated in Figure 6. [he k,
p-btu nodes. S ....... ;,. with their associated r-or nodes form the basic
components of the "l'-switch. Fvcry, input to the F-switch makes two connec-
tions-one excitatory and one inhibiorvy-to each of S,...._S., these inputs
directly connect to S,. As a result ot these excitatoryv-inhibitory connections, the
,_ ... .nodes cannot respond to incoming activation. Input activation will

output1  output output.
feedlback feedback feedb~ack

fr•omC from C,- from C 3

Figure 6. Architecture of the type hierarchy T-switch, which arbitrates the
flow of activation in the type hierarchy. The multiple instantiation constant k, = 3,
and represents the number of instantiations that can be represented in any

entity cluster.
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therefore have an effect onlv on the S, node F Figure 61. In keeping with the
behavior of p-btu nodes ý Section 2;, ., selects an arbitrary" active input and
continues to fire in phase with that input as long as it remains active. As S, goes
active, the r-or node associated with S, turns ON, thereby enabling S. via the
A link). Inhibitory feedback from C,, via the B link) ensures that S, is
not enabled during the phase p in which C, is tiring. lhus, S, selects and starts
firing in a phase other than p. Once S, has made its selection, ';, gets its turn, and
so on.

Note that, in general, (., could receive input in two phascs-one from the
bottom-up T-switch for C and another from its top-down T-switch. C,, being a
p-btu node, picks one of these phases to tire in. As instantiations are deputed to
the entity cluster, the p-btu nodes in the "F-switch are progressively enabled from
left to right. If C ...... C, , are tiring in phases ,, ..... p, , , then S, always
picks a distinct phase p 0 p,' ...... p, , , since inputs in phases/Ij, .... 1), , are
inhibited bv the feedback links from (C. (', ,. At any stage. if C,,, I i- k,
picks up activation channeled by the other F-switch, feedback from C, into the
r-or node associated with S, causes S, ,, to be enabled, even though S, has not
picked a phase. This mechanism ensures that at most k, instantiations are selected
jointly by the bottom-up and top-down "'-switches; hence, only k, instantiations
can be channeled to C, at worst.

.3.3. Connecii tin up the t.,pe hierarchy. A fact of the form is-a(A,B) is repre-
sented as shown in Figure 5 b) by connecting the A.,,,, i = ... k, nodes to the
bottom-up T-switch for 1; and connecting the /?,I, i = I .... k, nodes to the
top-down T-switch for A.

Consider a concept C in the type hierarchy. Suppose C, receives activation
from the bottom-up T-switch in phase p. C, starts tiring in synchrony\ with this
activation. The (.,, node is now receiving two inputs in phase p one from the
bottom-up T-switch and the other from C,; see Figure 5ta.), Since it has at
threshold 1) = 2, (C,, also tires in phase p. [his causes activation in phase it ro
spread eventually to the super-concept of' C. Hence, any upward traveling
activation continues to travel upwards-which is the required behavior when C
is associated with a universal typed variable ýSection 3.2). Similarly, when C,
receives activation from the top-down T-switch in phase p), both C, and (C,

become active in phase p. U,, follows suit, because of the link from (C, to (;,,, so
that the whole bank (:,, now tires in phase p. Thus, while any activation traveling
downwards continues to travel downwards, it also sets off upward activation trails
from every concept encountered on its way. This mechanism allows a concept
associated with an existential typed variable to spread its activation eventually to

its ancestors, descendants and ancestors of descendants. which is in keeping with
the desired behavior mentioned in Section 3.2. Note that the behavior of
downward activation is unlike that of upward activation-upward activation just
continues upwards while downward activation, apart from continuing down-
wards, also sets off an upward trail.

3.4. Fxample

Assuming that each concept in the type hierarchy shown in Figure 3t a, has the
structure indicated in Figure 5(a), the query Ix:Cat Ioves(x,Tweety)? (Is there a
cat that loves Tweety?') would be posed by: (i) activating Cat, and Cat,. to tire
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in svnchronv with lover; (ii) activating Tweety, and Tweety1, to fire in svnchrony
with lovee; and ý iii) activating e:loves. the enabler of the loves predicate.

Since Cat, is associated with an existential variable, Cat, and Cat1 . are
activated (see Section 5.2) and this activation spreads to Animal, 1  upwards, and
to Cat-11 ý downwards). Activation from Cat, also spreads to the ancestors of its
descendants. Since the ancestors of the descendants of Cat are Cat and Animal,
and since these concepts already have banks firing in phase with Cat 1 , no new
instantiations are introduced. Tweety is an entity directly appearing in the query
and is equivalent to a universally typed variable. Activation from Tweety,
therefore only propagates upwards, to Canary1 , Bird, and Animal2 . Figure 7
shows the resulting spread of activation in the network. The activity of the
corresponding T and I nodes are also indicated.

Activation spreading downwards from Cat1 causes Cat-i 1 to go active, while
upward activation from Tweety, eventually reaches Bird 1 . When this happens,

cloves

F2

Animal 2tP

Animal2

Bird, I

Bird,

Animal I f

Animal,,Ct., If R I n l I

Caa,-,y II tlI l __ Y _

Canary,

Cat. If H __f n l jL--

lover

,ovee

Cat,

Tweety. .

Figure 7. Trace of spreading activation for the query 3x:Cat loves(x,Tweety)?.
The rule base and the type hierarchy are as shown in Figure 3(a), except that the
entities in the type hierarchy are assumed to have the structure indicated in
Figure 5. Activation of only those nodes relevant to the query are shown. Uhe
time taken for activation to traverse the T-switches have been ignored in order to

simplify the diagram.
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the tact node F:2 corresponding to the tact ýx:Cat, Vy:Bird loves(x,y) turns ON.
This activates the enabler e:Ioves resulting in an attirmative answer to the query.

4. Multiple Dynamic Instantiation of Predicates

4. 1. Overview

As mentioned in Section 1.2, being able to represent multiple dynamic facts about
the same predicate provides several additional capabilities not possible in the
original reasoner. Introduction of multiple instantiation relies on the assumption
that, during an episode of reflexive reasoning, any given predicate need only be
instantiated a bounded number of times. In Shastri and Ajjanagadde (1993a), it
is argued that a reasonable value for this bound is around three. We shall refer to
this bound as the multiple dynamic instantiation constant for predicates. k_.

4.2. Inplementiig ,MAultiple I)Ynapnic Inslttntanwttop

4.2.1. Representing predicates. Since every predicate must now be capable of'
representing up to k, dynamic instantiations, predicates are represented using k,
banks of units. Each bank ot an n-ary predicate P) consists of" r-and nodes for the
collector cl:P) and enabler ýc:P' along with n p -btu nodes lr, ... 1.
representing the arguments of 11. U-ach bank is essentially similar to the predicate
representation used in Shastri and Aijanagadde ý 1990). Figure 8 illustrates the
structure of predicates in the system. Note that the enabler, c:P, and the
arguments, Pm,,,, . . . I dýtr, have a threshold" 0 = 2.

For a given predicate P, the enabler it" the ith bank c:P, will be active
whenever the ith bank has been instantiated with some dynamic binding. Thecollector cof, of| the ith bank will be activated whenever the dynamic bindings in

the ith bank follow from the knowledge encoded in the system.

4.2.2. The multiple instantiatiopt switch A.I -switch). lvery predicate in the ex-
tended system has an associated multiple instantiation switch, referred to as the
M-switch.' All connections to a predicate are made through its M-switch. The
M-switch has k, output cables ; see Figure 8), each of which connects to one bank
of the predicate. A cable is a group of wires originating or terminating at a
predicate bank; a cable, therefore, has wires from all the units (collector, enabler
and argument units) in a bank. Each output cable from the M-switch is accompa-
nied by a latch enable link. Activation of the latch enable link associated with the
ith output cable indicates that the M-switch has successfully selected an instanti-
ation for the ith bank of the predicate.

The M-switch arbitrates input instantiations to its associated predicate and
brings about efficient and automatic dynamic allocation of predicate banks by
ensuring the following:

"* Fresh predicate instantiations are channeled to the predicate banks tonly. if the
predicate can accommodate more instantiations.

"* All inputs that transform to the same instantiation are mapped into the same
predicate bank. Thus, new instantiations selected for representation in the
predicate are always unique.
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bank 1

2 2 2 D

bank 2

2 2 2 Fact Nodes
P(?,?)

bank 3 (connections not shown)

Predicate P

cablelatch 
enable 

-

SWITCH 
ca le

(for predhcate P) latch

enable

2 2

banank 1

2 2 22 2 2 2

2 2 22 2
banbnk 3
bank 2 3 6 ] n

Predicate 0 Predicate R

Figure 8. An overview of the multiple instantiation system. P and Q are binary
predicates while R is a ternary predicate. Overall connection pattern depicting the
encoding of two rules-one relating P and Q and the other relating 1P and R -is
shown. Nodes marked with a '2' have a threshold 0 = 2. The multiple instantia-
tion constant k, = 3, and represents the number of instantiations that can be

simultaneously represented in a predicate.

4.2.3. Structure and operation of the multiple instantiation switch. Figure 9 illus-
trates the construction of the M-switch. The M-switch consists of k, groups or
ensembles of units. The figures use k., = 3. The output of the ith ensemble is a
cable (along with its latch enable link) which connects to the ith bank of the
corresponding predicate.

As can be seen in Figure 9(a), each ensemble consists of an arbitrator bank
and several input banks. The arbitrator consists of n p-htu nodes representing the
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cable to cable to cable to
(a) predicate predicate predicate

bank 1 bank 2 bank 3

latchlatchl

ennable

input banks

1 2 3

bank 1 bank r

Figure 9. (a) Structure of the multiple instantiation M-switch which arbitrates
the flow of dynamic instantiations into predicates. We have again assumed that
the multiple instantiation constant k, = 3; this represents the number of instanti-
ations that can be simultaneously represented in a predicate. Detailed connections

are not shown to avoid cluttering.

arguments of the associated n-ary predicate, Pi - I r-or nodes and two r-and
nodes for the collector and enabler. Each p-btu node, except for the node
representing the first argument," is associated with a r-or node, as shown in
Figure 9(b). The ith arbitrator bank directly connects with the ith bank of the
predicate. Figure 9(b) shows the detailed structure ot the arbitrator and input
banks. Each input bank consists of n p-btu units representing the arguments of
the predicate, and two r-and nodes representing the collector and enabler of the
bank. Each input bank also has a r-or node associated with it. The cable
terminating at the input bank is an input to the M-switch, the outputs of the
input bank connect to the arbitrator of the respective ensemble. Corresponding
input banks across ensembles are interconnected as shown in Figure 9.

Ignoring the associated T-or nodes, the input banks and the arbitrators have a
structure which exactly mimics the bank structure of the predicate with which the
M-switch is associated. If the predicate has n arguments, the input banks and
arbitrator banks also have n p-btu units. The number of lines in the input cable
is decided by the arity of the predicate originating the cable. The number of lines
in the M-switch output depends on the arity of the predicate associated with the
M-switch. Since each input cable is connected to an input bank in each of the k,
ensembles, each ensemble in the M-switch has the same number of input banks.
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Figure 9. b) Structure ofense the ena bl e arbthe M-switch. Only comnnections
from input bank Q, to the arbitrator are shown. Connections to,,fnm o)ther input

banks and the arbitrator are implied. As indicated, connections to e:,,Irb in the

first ensemble are different.

To start with, ithoincig instantiations will activate the correspondiningput
banks in all the ensembles of the switch. All ensembles in the switch except the

first are disabled and cannot respond to incoming activation for the following

reason: nodes in the arbitrators of* all en,,:mbics, except c.'Arb in the first

arbitrator, receive both an excitatory and an inhibitory input from their respective

input units. The activation therefore cancels out and the arbitrator nodes in these

other ensembles do not become active. Any activation incident on the switch will

therefore affect only the first ensemble. Activation in one or more input banks of*

the first ensemble will cause the enabler in the arbitrator, c:,Arb, to become active.

All input banks with inactive enablers-i.e, input banks with no incoming

activation-will be inhibited via the r-or nodes associated with the respective
input banks. The activation of e:Arb in the first ensemble will block the inhibitory
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inputs to the p-btu node. .I'b,, thereby enabling this node io pick a phase to

tire in. This node, in keeping with the behavior of tp-btu nodes, arbitrarily selects

one tot' its input phases and begins firing in that phase."' As soon as sIr ",elects
a phase to fire in, this phase is communicated to all the input banks, via the r-or
node associated with the input banks see Figure 9( bo. [For each of the input

banks, the associated r-or node checks it the phase selected by -rb,,., is the same
as the phase in which the tirst argument of that input bank is tiring in. It' the
phases do not match, the corresponding r-or node shuts ott the entire input bank.
Thus, when Arb.,, selects a phase p from its input, all activation except that in
which the first argument tires in phase p is inhibited.

In the meantime, e:Arb would have activated the r-or node associated with the
second argument, Arb.,,, in the arbitrator. "'his enables .'lrb,,, to select a phase
from the activation remaining after inhibiting instantiations that do not agree with
.lrb,,,. Note that ,.rb,, is enabled by the associated r-or node independent of
.Arbr.. and will select a phase to tire in even it-. lrb .... is inactive , which would be

the case it all incoming instanttations have an unbound first argument). The

process continues, allowing .Alrb,,,, ..... Irb.,,. to select phases to tire in. After,

.'rb.,,,., has made its choice, the first ensemble would have picked an instantiation
to be channeled to the predicate bank. The latch enable, which originates at the
r-or node associated with .lrb . becomes active and the selected instantiation is
transferred to the first predicate bank. A link from this last r-or node to t.''rb in
the second ensemble enables the second ensemble to select a fresh instantiation.

After the first ensemble has selected an instantiation to be channeled to the
predicate, only those input banks which represent this exact pattern of activation
will be active in the first ensemble. All other input banks will be inhibited due to
a mismatch in the firing pattern. Further, input banks remaining active in the tirst
ensemble will blot out activation in all corresponding input banks in all the other
ensembles. This ensures that the instantiation selected by the first ensemble will
not be selected again in any other ensemble.

Once the second ensemble is enabled b\by blocking inhibitory inputs to c:..rh
in the ensemble), it will pick an instantiation, channel it to the predicate bank,
and enable the third ensemble in the M-switch, and so on. '['he process continues
until k, instantiations have been channeled to the predicate. after which any fresh
input instantiations are ignored.

Note that the ensembles in the ,l-switch have an implicit ordering from left
to right ( Figure 9(a)). If the ith ensemble ý I -_ i - k, is making its choice, it will
always select an instantiation which is different from those picked by the tirst
i - I ensembles. Further, a new instantiation arriving at the Al-switch wvill be
checked to see if it has already been assigned to a bank in the predicate. If so, the
activation will be diverted to the bank already assigned to it." If not, the
activation is assigned a new bank in the predicate, via the next unused ensemble
in the ,l-switch. Thus, all the instantiations channeled to the predicate are
unique.

Further, whenever the collector of the ith bank of' the predicate associated
with the M-switch becomes active, the activation automatically gets transmitted
to the collector of the predicate bank which originated the instantiation selected
by the ith ensemble. Also note that c:A4rb becomes active only if both c:.'Irb and
the collector of the associated predicate bank are simultaneously active. A more
detailed description of the structure and operation of the M-switch can be tound
in Mani and Shastri ( 1992).
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5. Encoding Rules and Facts

Having described the mechanisms used to encode the type hierarchy and imple-
ment multiple dynamic instantiation of predicates, we shall now describe the
encoding of rules and facts in the extended system. Also, queries in the extended
system can contain typed variables, we will discuss how the typed variables are
interpreted and how such queries are answered.

5. 1. Facts

Facts in the original system tShastri & Aijanagadde, 1990) are encoded by wiring
up temporal pattern matchers, as shown in Figure 1 a). The extensions we have
made to the system necessitate the addition of extra machinery in order to match
correctly dynamic instantiations with long-term facts.

Concepts and instances can now accommodate k, instantiations. A fact should,
therefore, be able to check it any one ot these k, instantiations is in the required
phase. This effect is realized by treating the output of concept clusters to be a
bundle ofk, links. Figure 10 shows the encoding of the fact P(C, . C... ,,), where
the outputs of C ...... (C,, are considered to be bundles of( k, = 3 wires. Further,
given the capability of the system to encode multiple dynamic instances of a predi-
cate, the dynamic instantiation which matches a long-term fact could occur in any
one of the k. banks for that predicate. We therefore need a fact-pattern-matcher
for each of the predicate banks. Thus, any fact P(C1 . C - ,,) will be encoded
using k. T-and nodes-one for each bank of iP-as illustrated in Figure 10.

As mentioned in Section 3.1, a typed, universally quantified variable is treated
as being equivalent to its type, and vice versa. Thus. the facts Vx:CA, y:CB P(xy),
Vx:CA P(x,Ce) and Vy:Ca P(CA,y) are equivalent to P(CA., CfB). A typed, existen-
tiallv quantified variable is encoded by creating a unique subconcept of the
associated type. Thus, 3x:CA P(x,C,) is encoded as P(C,Ce), where (C, is a
unique subconcept of C ,. This interpretation lorces all existential variables to he
outside the scope of the universal variables in the tact. Further, any unspecified
role in a fact is treated as being existentially quantified. For example, Vx:Cat
preys-on(x,y) would be interpreted as 'every cat preys on somc bird'.

5.2. Querics

With the introduction of the type hierarchy, the extended system can answer
queries with typed variables. Though the system can deal with both yes-n, and
WH queries, we shall concern ourselves only with '.es-nuo queries.

Consider a query P(.... x, . . .)? where x is a typed variable of type C.,, tilling
the ith argument of P. To pose the query to the system, the enabler c:P of predicate
P is first activated. Depending on whether x is universally or existentially
quantified. we proceed as follows:

e If x is universally quantified-i.e. the query is of the form Vx:CA
P( .... x .... )?-then C(,, and C , Ti.e. the C, and C.., nodes in the first bank
of the entity cluster for C.,) are set to fire in. synchrony with the ith argument
of P. In order to verify if P(.... CA, ... ) is true, we need to check if
P( .... C .... ) is asserted in the system where C is either (C. or an ancestor of
(4. Activating C,, and C.1t, achieves exactly this goal, by virtue of the
activation control mechanism ( Section 3.2).
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bank 1 1C Cn

banr

bank 3

Predicate P
Fact: P(C. OCn)

Figure 10. F, ncoding long term facts in the extended reasoning system. 'lhe fact

encoded is P(C ..... O.). We have assumed that k k = 3,

a If x is existentially quantified-i.e. the query is of the form 3x:CA
P(.... x .... )?-then C..,, and ,.t are set to fire in synchrony with the ith
argument of P. This causes activation to spread to the ancestors, descendants
and the ancestors of the descendants of C'.As stated in Section 3.2, the
propagating activation searches for facts which would render the current query
true.

A more detailed justification of the correctness of the above procedure can bc

found in Mani and Shastri (1991).
Just as for facts, concepts directly specified in the query predicate are a

shorthand for universal typed variables-i.e. P(. ... . . .)? is the same as

Vx:CA P(. . . x, ... )? Universally quantified variables are interpreted to be within
the scope of the existentially quantified variables. Untyped variables are unspe-

cified roles, and hence will not be assigned a phase when communicating the

query to the network.
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5.3. Rules

Rule encoding in the basic system is illustrated in Figure I a), and a detailed
account can be found in Shastri and Aiianagaddc , 1991) . I lere we shall consider
the capabilities and complications introduced by the extended system.

The type hierarchy can be used to impose type restrictions on variables
occurring in rules, for both forward and backward reasoning. To utilize this
feature, we need to modify the encoding of rules. In a forward reasoning system,
a rule is encoded by introducing a r-or node to perform tvpe checking for the
argument in question. Figure 11(a) shows the encoding of the rule Vx:T 1,
y:T 2 3z:T 3 P1 (x,y) A P2 (x,z) Qý' Q(y). Ilere, g., g, and g, are r-or nodes for type
checking which turn ON only if the corresponding predicate arguments are
bound to objects of the right type. For example, g• would go ON only if the
second argument of 11, and at least one of the instantiations oit "!', are in
synchronv -which is to say that the argument is bound to an object of type .1".
As indicated in the figure. links from F1', F, and 7', are bundles of k, wires each.
It is also evident from Figure I lI a) that the rule will not fire-and predicate Q)
will not go active-unless all the g-nodcs g1 , g. and .g'1 are active. In a backward
reasoner, the strategy is similar, except for two basic differences. First, type
checking for a typed universally quantified variable is enforced by a bundle of k,
inhibitory links from the concept tsee Figure i I bW representing the type of the
concerned argument. Second. for a typed, existentially quantified variable, the
inhibitory links for type enforcement are derived from a unique subconccpt of
the associated type.' 2 The network which implements the rule Vx:T1 3y:T 2
P(x) . Q(x,y) for backward reasoning is sketched in Figure I I(b). Any type
mismatch causes g, to block further propagation of activation. Thus, in both the
forward and backward reasoners, the encoding mechanism ensures that a rule
fires only if all typed arguments are firing in synchrony with their respective
types.

When multiple instantiation of predicates is introduced, the rule connectivity
indicated above will need to be replicated k. times and rule wiring will need to be
routed through the M-switch. Figure 8 illustrates rule encoding at a very gross
level. Figure 12 gives a more detailed description of rule encoding in the ,xtendcd
system. Figure 12 depicts the encoding of the rule Vxy P(x,y) n, Q(y,x).

Fach bank of predicate Q is connected to an input bank in every ensemble of
the switch for P. Consider the connection from the ith bank of Q to the
corresponding input bank in thejth ensemble of the switch for 1). The input cable
from bank i of Q connects to the input bank as though the input bank itself
represented the predicate 11. Thus, the connection pattern between the bank of Q
and the input bank is identical to the connection pattern between the actual
predicates in the system of Shastri and Ajjanagadde ( 1990). In particular, tor the
example in Figure 12, we have the following connections for 1 i- k, and
I <--j •k.,:

"* The enabler e:Q, of the ith bank of Q is connected to the enabler in the
corresponding input bank of the Ph ensemble of the switch for P.

"• The collector in the same input bank is linked to c:Q,. the collector of| the ith
bank of predicate Q.

"* The first argument of the ith bank of Q connects to the second argument in the
input bank while the second argument of the predicate bank connects to the
first argument of the input bank.
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Figure 11. (a) Network encoding the rule Vx:T 1, y:T2 3z:T3 P1 (x,y) A P2 (xz)
Q(y) in a forward reasoning system. g1 , g9, and g, are r-or nodes which pertorm
type checking, apart from enforcing other constraints; 0 represents the node
threshold. b) Network encoding the rule Vx:T 1 3y:T. P(x) = Q(x,y) in a back-
ward reasoning system. T, is a unique subconcept of 7; g, is a r-or node. We

have assumed that k, = 3.
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Figure 12. E ncoding rules in the extended reasoner with muatiple referntiatie
ofprb .I The rd te pred is Vx,y P(x,y) c Q(y,x). Nodes marked with a e2'
have a threshold 0 = 2. To avoid cluttering, only part of' the connections arc

indicated.

Since the ith bank of' Q is connected to an input bank in every ensemble of" the
switch, the collector c:Q, of this bank receives inputs from the respective collec-
tors in the input banks of all the ensembles of the switch. The r-or unit associated
with the input bank ensures that the collector c:Q, is activated if and only if the
instantiation received by the input bank has been channeled to the predicate, and
the collector in the corresponding bank of' predicate P is active ý refer to F~igure
9(b)). In other words, the predicate collector c:Q, would be activated it' the
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activation of Q, has been channeled to P', and the collector c:P. is active. Tlhe
combination tit collectors in the arbitrator and the input bank therefore %erve as
a mechanism for transmitting the state tf the collector c:1). to the collector € ) ,t
predicate Q.

Rules with multiple predicates in the antecedent are handled by an extension
of the above procedure. lFigure 13 gives a network which encodes the rule Vx,y,z
P(x,y) A Q(y,z) - R(x,y,z). The g3, nodes " check that the dynamic activation
of the ith bank of" R follows from the facts for both 1) and Q. Note that Lj3,

bank 00 bk 00
bank I bank 1

(ý n 0 U (2
bank 2 bank 2

Ur @@ 2) (D
bank 3 Predicate P bank 3 Predicate 0

SWITCH SWITCH
for P for

Pi P2 P30 02 03

2 R2 R2 RY8
AlRI R3I 3 R 3R 3 Ft 3 1 R

To inut bnk ( 1 )To input bank (R 1 )

Rule:3V x,y,z P(x,y) & O(y,z) => R(x,y,z)

3

3'
0-2

bank 2

bank 3
Predicate R

Figure 13. FIncoding rules with multiple predicates in the antecedent. The rule
encoded is Vx,y,z P(xy) A Q(y,z) ý R(x,yz). l'he nodes marked q, are r-and
nodes; 0 represents the node threshold. Nodes marked with a '2' have a threshold

01 = 2. T'o avoid cluttering, only relevant connections are indicated.
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will become active irrespective of which banks of 1P and Q contain the activation
which triggered the required facts.

The encoding ofa rule with repeated variables in the consequent, existential
variables in the consequent and constants" in the consequent is shown in Figure
14. The output of the g I nodes inhibits the links from Q to the predicateý s) in the
antecedent of the rule. Note that the scheme is identical to the one used to handle
such conditions in Shastri and Ajianagadde 1 1990), except that we repeat the
scheme for each of the k, banks. Further, the inhibitory links from entities would
be bundles of k1 links.

Showing Predicate 0 in a rule of the form:
V x ( ANTECEDENT => 3y Q(x,x.y,A) I to switch

•/ • • •to switch

input bank

to switch
bank 2an

bank 3

Predicate Q

Figure 14. Encoding rules with special conditions-repeated variables, existen-

tially quantified variables and constants in the consequent-in the backward
reasoner. The rule encoded is Vx ANTECEDENT =: •y Q(x,x,y,A). TIhe antecedent of
the rule has been left unspecified sincc the mechanisms used to handle the special
conditions are confined to modifying the activation from the consequent predi-
cate. The g1 nodes are c-or nodes. '1he g, nodes are like r-or nodes except that
they' become active if they receive input in more than one phase within a period

of oscillation.
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5.4. ('oinpihxit' vi tMe .Nctwork

The extended reasoning system requires t ,k, . + k,. • .9 nodes, where
't, is the total number of entities in the system, .Y is the total number of long-term
facts present in the reasoner. and .)9 is the sum of the arities of all predicates in
the rule base. k, and k. are the multiple instantiation constants for the type
hierarchy and the rule base. respectively. As in Shastri and Aijanagadde ( 1990),
the network complexity is at most linear in the size of the knowledge base.

As for time complexity, the system can answer queries in time proportional to
the length of the shortest derivation, irrespective of the number of rules and facts
encoded in the system. Compared with the original system, the constant of
proportionality is now slightly larger, since we also need to consider the time
required for activation to propagate through the switches. Given a predicate P,
the best case propagation time for activation passing through its ,\I-switch is
proportional to ni, the arity of tP in the worst case, propagation time is propor-
tional to k, • i. If we assume that n ...... is the maximum aritv of any predicate in
the reasoning system, then the constant of proportionality fowr the time complexity
will be proportional to n in the best case) or k,... ., in the worst case),
irrespective of the predicate under consideration. Tlhe time taken for activation to
traverse the type hierarchy is independent of k,, and is only dependent on the
number of is-a links that need to be traversed in order to answer the query. The
time taken to answer a query will be proportional to the maximum of the time
taken for activation to spread in (i t le rule base and ,ii in the type hierarchy.

5.5. Multiple Instantiation in a Forward Reasonin.' System

All along, we have looked at how the basic reasoning systemn could be extended to
accommodate multiple instantiations of predicates in the b.,,kward reasoner. We
now consider issues that arise when incorporating multiple instantiation of
predicates in the forward reasoner.

In a forward reasoning system, predicates have the same structure as in the
backward reasoning system. As before, every predicate has an associated multiple
instantiation ,\I-switch." Rules with a single predicate in the antecedent can be
encoded directly: each bank of the antecedent predicate is connected to input
banks in every ensemble of the NM-switch for the consequent predicate. Rules with
multiple predicates in the antedecent, however, require special consideration.
Suppose we have a rule of the form Vx,y,z P(x,y) A Q(yz) => R(x,y,z). Suppose
also that we are given the dynamic facts P(A,B) and Q(B,C). Then we should be
able to conclude R(A,B,C). But the dynamic fact P(A,B) could be represented in
any of the k, banks allocated for P. Similarly Q(B,C) could be active in any of the
k, banks allocated for Q. To conclude R(A,B,C), we would need to pair each bank
of P with all the banks of Q and check if the second argument of 1) is the same
as the first argument of Q; in other words, we need to check if the second
argument of 1P, is the same as the first argument of' Q, for I -_i.j -_ k-. The
obvious solution to this problem requires () k"'. nodes and links to encode each
multiple antecedent rule, where in is the number of predicates in the antecedent
of the rule and k, is the multiple instantiation constant for the rule base.
Typically, we expect the value of k, to be around 3. as argued in Shastri and
Aijanagadde, 1993a), and in to be around 2. (Generally, in a rule containing an
antecedent with several predicates, most of the antecedent predicates function to



(C17nectionisI Reasonig Svsiepm 235

specify constraints on the arguments of one or two key predicates. Since the
reasoning system can handle rules with typed variables, most of the predicates
enforcing type constraints can be replaced by typed variables. F~or example, the
rule Vx,y collide(x,Y) Aanimate(x) A solid-obj(y) =- hurt(x) with three predi-
cates in the antecedent is equivalent to the simple rule Vx:animate, y:solid-obj
collide(xy) =: hurt(x). The latter rule can be directly encoded in the extended
reasoning system. liven if this 'compression' of the antecedent were not possible,
we could always introduce dummy predicates and split a rule with several
predicates in the antecedent into several rules with just a few predicates in the
antecedent. Thus, with typical values of k, : 3 and ?n z 2, the extra cost of
encoding rules in the forward reasoner with multiple instantiation is a factor of
about 10 ( : 32).

Special conditions in a rule (like repeated variables, existential variables in the
antecedent, constants in the antecedent, etc.) can be handled as usual, before
connecting a predicate bank to the input banks in the MI-switch.

Incorporating multiple instantiation in the forward reasoner gives us the
capability to encode rules like Vx,y,z Ioves(x,y) A loves(y.z) =- jealous(x,z), and
infer jealous(John,Tom) given Ioves(John,Mary) and loves(Mary,Tom).

5.5. L Forward and backward reasoning. The structure of the ki-switch used in
both the forward and backward reasoners is identical. The differences in connec-
tivity in the forward and backward reasoners arise from the differences in rule
encoding. Further, handling special conditions in rules-like repeated variables,
constants, existential variables, etc.-are dealt with differently in the forward and
backward reasoners. l)espite the similarities in the M\-switch structure, the
incompatible differences in the network structure of the forward and backward
reasoners would make it difficult to use the same network for both forward and
backward reasoning.

B3y carefully defining the interface between the forward and backward reason-
ers, we could have a system with both the forward and backward reasoners
functioning independently and at the same time exchanging inferences and
predicts, thereby complementing each other. Work is being done on developing
such a system.

5.6. Constraints

The original system described in Shastri and Ajjanagadde (1990) and the ex-
tended system described here are tractable, limited inference systems i Shastri,
1993a). Though the system can handle a large class of rules and facts. there are
some constraints on the form of rules and facts. A brief description of these
constraints is provided here. A more detailed description along with psychological
implications of these constraints can be found in Shastri and Aijanagadde, 1993a)
and Shastri ( 1992').

In a backward reasoning system, where activation flows from the consequent
predicate to the antecedent predicatet s), any predicate argument in the antecedent
that requires some condition to be enforced must occur in the consequent and get
bound during a given episode of reasoning. Thus, typed variables, repeated
variables, existential variables and constants which occur in the antecedent of a
rule must occur in the consequent and get bound during any episode of reasoning.
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For example, the rule Vx.y,z loves(x,y) A loves(y.z) -, iealous(x,z), cannot he
encoded in the backward reasoner %ince the antecedent has a repeated variable v
which does not occur in the consequent. In fact, it has recently been shown
SDeitz ct al.. 1993) that the repeated variable constraint-repeatcd variables in
the antecedent must occur in the consequent and get bound during any episode
of reasoning-is essential in order to draw inferences in time independent of the
size of the knowledge base.

Constraints similar to the above hold for the forward reasoner: typed vari-
ables. repeated variables, existential variables and constants which occur in the
consequent must occur in the antecedent and get bound during any episode of
reasoning. Thus, the rule Vx,y,z t1 ,t2  move(x,y,z) -= present(x,y,t
present(xz,t 2 ) cannot be used for forward reasoning since the existential
ables t, and t, do not occur in the antecedent.

While representing facts and posing queries which involve typed variabl,:.s.
only those situations where all the universally quantified typed variables are
within the scope of the existential typed variables can be represented. Further,
concepts and predicates can only represent a limited number of dynamic instanti-
ations.

The reasoning system also introduces the constraint that only a small number
of entities can he simultaneously active at any given time. This may not be
restrictive for any given episode of reasoning, but can be limiting when complex,
interlinked chains of reasoning are required. In such cases, the set of entities in
"focus' must keep changing dynamically, recycling the available phases 1see
Section 5.7).

5. 7. Significance of the Constraints

The reasoning system is psychologically and cognitively plausible in that it
provides verifiable predictions and pointers which further our understanding of
reflexive reasoning ( Shastri, 1992; Shastri & Ajjanagadde, 1993a The constraints
listed in Section 5.6 predict what kinds of* rules may participate in reflexive
reasoning and what kind of rules will need 'reflective' reasoning. An example to
wit would be the rule 'if x loves v' and *, loves z, then x is icalous of z'. Suppose
we are told that 'John loves Mary' and 'Mary loves Tom' then wc can reflexively
infer that 'John is jealous of 'Tom'. But if we assume that the facts 'John loves
Mary' and 'Mary loves Tom' are encoded as long term knowledge, we will find
it difficult to answer the query 'Is John jealous of' Tom?' in a reflexive manner.
Observe that the rule 'if x loves v'and , loves z, then x is jealous of z' can be used
reflexively in the forward reasoner hut not in the backward reasoner since the
antecedent contains a repeated variable Y which does not occur in the consequent
(Section 5.6).

Another prediction introduced by the system is based on the multiple instan-
tiation constraint. A predicate cannot he instantiated more than a (small) fixed
number of times. Thus. we would expect to have difficulty dealing with too many
instantiations at once. For example, we would normally find it difficult to answer
questions about who loves whom reflexively after having been told without
repetitions) that: Susan loves Tom, John loves lisa, Tom loves Mary and Clara
loves Tom.

One of the constraints stated in Section 5.6 was that only a small number of
distinct entities (seven to ten) can be simultaneously active in the system, at any
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given time. When taken together with other memory mechanisms. we argue that
this is not as restrictive as it sounds. As discussed in Shastri and Aijanagadde
,1993a), when involved in tasks which require keeping track of a large number of
entities over reasonable time spans-like reading a novel or participating in a
conversation-those dynamic facts that are relevant could enter a medium-term
memory where they would be available for a much longer time. Some of these
facts might even he converted to long-term facts, which persist for a long time.
There could arise situations-which require complex, interlinked chains of
reasoning-where the total number of entities could exceed the limit imposed by
our system. In such cases, the set of entities in focus' must keep changing
dynamically, recycling the available phases. Identifying mechanisms that underlie
such internal 'shifts of attention' and cause the system's activity to evolve
smoothly remains a challenging open problem.

These constraints also have implications for other 'reflexive' processing phe-
nomena besides reasoning. Henderson's ( 1993) work on parsing shows that the
above constraints help in explaining some of the limitations of human parsing by
modeling several linguistic phenomena involving long distance dependencies.
garden path effects and our limited ability to deal with center-embedding.

5.8. Simulations

The reasoning system has been tested using a simulator (Mani, 1991) developed
to run on the Rochester Connectionist Simulator Goddard ct al., 1989X. The
simulator runs as a 'shell' on top of the Rochester simulator. It provides an input
language for entering rules, facts and queries. A network encoding the input
knowledge is automatically built. The simulator can construct stand-alone for-
ward or backward reasoning systems, or a combined resoning system with the
forward and backward reasoners forming independent layers. The simulation can
be run interactively and the progress of the simulation monitored using graphic
displays.

A knowledge base containing about 100 rules, 25 facts and 50 is-a facts has
been simulated. The resulting network requires about 7100 nodes for the back-
ward reasoner, about 8700 nodes for the forward reasoner and about 1200 nodes
for encoding the type hierarchy. The node count for the backward reasoner
includes nodes used to encode facts. The type hierarchy contains a total of about
60 concepts and instances. Based on these simulations, it can be argued that the
reasoning system can draw a class of inferences in about a few hundred millisec-
onds. In a system made up of slow 'neurons', with a firing period nt of about
20ms and with the assumption that p-btu nodes can synchronize within two
firing periods, we can arrive at the following timing estimates: the system takes
about 260 ms to infer that 'John is Mary's spouse' given 'Mary is John's spouse'.
Given that 'John bought a novel', the system takes about 320 ms to conclude that
'John owns a book'. With 'John bought a novel' encoded as a long-term fact, the
system can answer 'yes' to the queries *Did John buy a novel?' and 'Does John
own a book?' in 140 ms and 420 ms, respectively.

Prototype implementations of the reasoning system have been developed on

the Connection Machines CM-2 and CM-5, and initial results have been very
encouraging. The prototype system can encode knowledge bases containing over
a hundred thousand rules ani facts, and can answer queries requiring an
inference depth of up to ten in times ranging from a few milliseconds to a few
hundred milliseconds on the CM-5.
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6. Related Work

Though there have been several attempts to develop connectionist rule-based
reasoning systems, very few of the approaches concern themselves with reflexive
reasoning. A detailed discussion of the advantages and disadvantages of several
other approches-both connectionist and otherwise-can be found in Shastri and
Ajjanagadde t1993a). ltere. we shall limit the discussion to type hierarchy
implementations, multiple dynamic instantiation of predicates. and the interaction
between the type hierarchy and the rule base.

Early work like Fahlman ( 1979) and Shastri ( 1988) considered efficient and
massively parallel implementation of is-a hierarchies. But these systems did not
deal with the explicit representation of rules involving n-ary predicates.

DCPS, a distributed connectionist production system introduced by Tou-
retzky and Hinton (1988,, was limited in that it could only deal with single
variable rules, and like a classical production system, could only tire one rule at
a time. TPPS, described in D)olan and Smolenskv , 1989), is a production system
which uses tensor products to encode dynamic bindings. like I)CPS, TPPS is
also serial at the knowledge level in that it can only fire rules serially. Trhe
restrictive nature of these systems-both in terms of expressive power and in
terms of effective use of parallelism-renders them unsuitable for successfully
modeling reflexive reasoning. I)CPS and TPIS use a distributed encoding in that
arguments and fillers are represented as patterns of activation over groups of
nodes. These systems, therefore, inherit the advantages and disadvantages of
distributed connectionist systems. The advantages of distributed representations
stem from their ability to capture similarity. The seriality (at the knowledge level)
imposed by representing roles and fillers as patterns of activity over a common
pool of nodes, however, constitutes the major disadvantage of using distributed
representations.

The key to capturing similarity in a distributed representation is the use of
shared representation. As stated in Shastri and Ajianagadde 1993b., the type
hierarchy in the reasoning system also leads to such a sharing of representation by
viewing the encoding of an entity as a distributed pattern over the collection of
nodes that make up the type hierarchy. If one augments the representation ot
types with attribute values t Shastri & Feldman, 1986; Shastri. 1988). then the
'distributed' nature of the representation of each entity becomes even more
apparent. For predicate arguments, the reasoning system uses a representation
where each role is localized in the abstract representation."' It is this abstract
localization of roles that enables the system to J) overcome the inherent seriality
oft distributed representations and Jii support knowledge-level parallelism.

CONPOSIT, a system introduced by Barndcn and Srinivas :1991) uses
relative position encoding and pattern-similarity association to solve the variable
binding problem. Issues that we have considered in this paper, like encoding the
type hierarchy, dealing with typed variables, etc. are not considered in Barnden
and Srinivas's paper ý 1991). Rather than reflexive reasoning, CONPOSIT is
tailored to handle a more complex class of rules and seems to be better suited for
complex reflective reasoning-reasoning which requires reflection. conscious
thought and deliberation. CONPOSIT is also serial at the knowledge level.

The connectionist reasoning system most similar in approach to the one
proposed here is ROBIN (Lange & Dver, 1989). ROBIN was developed to
address ambiguity resolution in language understanding using evidential knowl-
edge. In recent work, ROBIN has been extended to deal with case-based
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reasoning in combination with rule-based reasoning % Wharton ei al., 1992. Unlike
the temporal synchrony approach, ROBIN can deal with an arbitrary number ot
entities during reasoning. ROBIN can do so because it permanently allocates a
unique signature to each concept in the system, and sustains dynamic bindings bv
propagating these signatures. As discussed in Shastri and Ajianagadde , 1993a),
there are certain drawbacks to propagating signatures in a connectionist network.
Furthermore, the use of signatures does not lead to the type ot psychological
predicts than can be made using the temporal synchrony approach.

CONSYt)IiRR is a connectionist rule-based reasoning system which uses a
two-level architecture ( Sun, 1991 ). One level uses a distributed representation
while the other uses a localist representation. [he two levels interact to provide
a robust system that can handle partial. fuzzy and uncertain information. Though
this system has an implicit type hierarchy built into the architecture, it does not
consider how multiple dynamic instances ofa predicate can be represented.

7. Conclusion

Adding a type hierarchy allows the reasoning system to represent is-a relation-
ships efficiently and supports the occurrence of types as well as instances in rules,
facts and queries. Being able to represent multiple dynamic instances ot a
predicate adds the capability to draw inferences using rules that capture symme-
try, transitivity and recursion, provided the number ot' multiple instantiations
required to draw a conclusion remains bounded. The extended reasoning system
can therefore draw a much wider range of inferences. T'hough the resulting
reasoner is relatively complex compared to the original system, the increased
inferential power seems worth the added complexity, especially since we do not
lose much in terms of efficiencv.

"l'he reasoner can perform high-level reasoning while still utilizing the massive
parallelism inherent in connectionist systems. The resulting system can draw
inferences in time which are independent of the size ot the knowledge base. T'he
system is also scalable in that very large knowledge bases can be handled
tractably. Work is being done on mapping the system on to massively parallel
SIMI) and MIMI) machines with the objective of attaining real-time pcrfor-
mance (Mani, 1993).

Support bor the neural plausibility of the system is provided by the fact that
it is based on temporal synchrony. Recent neurophysiological (Gray ct al.. 1991,
data suggest that temporal synchrony may be used in the animal brain to
represent dynamic bindings. A more detailed discussion of the cognitive, biologi-
cal and psychological aspects of the reasoning system can be found in Shastri and
Aijanagadde ( 1993a).

"This paper does not discuss the issue of learning. T'here has. however, been
some preliminary work describing how such a system might convert dynamic
bindings into medium-term facts , Geib, 1990). l)evcloping effective learning
algorithms is an exciting future research direction and an outline of a learning
scheme for such a system is discussed in Shastri ( 1993bh. Some of the other
extensions being investigated include: dealing with facts and queries involving
more flexible interleaving of quantifiers: expanding the system to allow property-
value attachments to concepts in the type hierarchy: combining the forward and
backward resoners to function as an integral reasoning system: and introducing
evidential-preference rules, especially via learning.
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Notes

I. There have been some notable exceptions. see Section 6.
2. Older-than(John's-father.John) follows from the knowledge that fathers are older than their

children.
I. The solution to the multiple instantiation problem proposed in this paper i, distinct trom that

outlined in Shastri and i-anagadde , 19911. %here two levels tof temporal ssnchronv are used to
deal with multiple instantiations ot predicates.

4. In the rest ol this paper, we assume that synchronous activity of nodes is oscillatory. As explained
in Shastri and Aijanagadde , 1993bW, however. oscillatory activity is not required tfr paper
lunctioning of the model-the crucial requirement is that appropriate nodes synchronize. We
have assumed oscillatory activity lor convenience.

5. This is in keeping with the natural default meaning associated with statements like 'cats prey on
birds', which generally means 'all cats prey on all birds'.

6. This corresponds to the use of a skolcm constant.
". This applies to a predicate in the backward reasoning system. In a forward reasoner, the collector.

c:P, and the arguments. PA,,., . . ,,, have a threshold 0 = 2. These nodes require a threshold
of 0= 2 in order to use a latch enable link it) signal when the bank should go active Figure 8).

9. Distinct from the T-switch used in the type hierarchy.
9. The enabler node c..rb plays the role of the r-or node for the first argument in the arbitrator.

Thus, if' we have a unary predicate. the latch enable link will originate from ,:.-Irb.
11). If the node is receiving inputs in several phases, it picks otnc arbitrarilv. Il a ,imulation system,

this could involve selecting a phase at random, selecting the first phase. selecting the last phase.
and so on. The simulation system we use i Section 5.8, selects the first phase. In a ph%%ical system.
however, the phase in which a node fires will depend on complex interactions between the relevant
nodes and this interaction may even he chaotic.

II. Suppose the new instantiation arriving has already been assigned to bank 1. In such a case, the
inhibition on the corresponding input bank in ensemble , will be removed when the instantiation
arrives. The input bank will become active and will blot out this instantiation trom ensembles
j + I . . k.. thereby automatically assigning this instantiation to bank j.

12. This is similar to the manner in which typed existential variables in a fact are interpreted.
13. g 3 , refers to the V,3 node lfr the ith bank of the predicate.
14. (Constants denote entities in the domain.
15. Though the multiple instantiation M-switch associated with a predicate in the forward reasoning

system is structurally identical to the M-switch used in the backward reasoner, there arc a few
minor functional differences. Figure 9 shows connections in the context of a backward reasoning
system. In a forward reasoner, the enabler in the arbitrator, e:.lrb, connects to the collcctor of the
associated predicate, while the cnablers in the input banks receive inputs from the collectors of the
input predicate banks. The collectors in the arbitrator and input banks arc left unconnected, as arc
the cnablers in the predicate banks.

16. Each role, however, can be represented by a cluster of nodes thereby providing a physically

distributed representation.
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Abstract

We describe an alternate approach to visual recognition of hand-printed words,
wherein an image is converted into a spatio-temporal signal by scanning it in one or
more directions, and processed by a suitable connectionist network. The scheme offers
several attractive features including shift-invariance and explication of local spatial
geometry along the scan direction, a significant reduction in the number of free param-
eters, and the ability to process arbitrarily long images along the scan direction. Other
salient features of the work include the use of a modular and structured approach for
network construction and the integration of connectionist components with a procedu-
ral component to exploit the complementary strengths of both techniques. The system
consists of two connectionist components and a procedural controller. One network
concurrently makes recognition and segmentation hypotheses, and another performs
refined recognition of segmented characters. The interaction between the networks is
governed by the procedural controller. The system is tested on three tasks: isolated
digit recognition, recognition of overlapping pairs of digits, and recognition of ZIP
codes.



1 Introduction

A device capable of hand-print recognition has numerous applications in diverse areas such as postal sorting,

print-to-voice transcription devices for the visually handicapped and human-machine interaction. I Given

its importance and scope, the hand-print recognition prcblem has received considerable attention from

researchers in the fields of pattern recognition and machine vision for over 30 years (e.g., (Bledsoe and

Browning, 1959; Highleyman, 1961; Chow, 1962; Duda and Fossum, 1966; Munson, 1968; Pavlidis and All,

1975; Caskey and Jr, 1973; Yamamoto and Mori, 1979; Lam and Suen, 1988; Gader et al., 1991; Suen et al.,

1992; Le Cun et al., 1990; Blackwell et al., 1992; Garris et al., 1992; Knerr et al., 1992; Fukushima et al., 1983;

Burr, 1988; Denker et al., 1989; Shridhar and Badlerin, 1987; Fenrich and Krishnamoorthy, 1990; Keeler

et al., 1991). In fact, it is perhaps one of the oldest and most explored problems in computer science. Yet the

problem still remains largely unsolved. The difficulty in developing an effective solution to the problem can

be attributed to the extremely high variance of unconstrained hand-print. This variance is due to a number

of factors including: mechanical differences in stylus and writing surface, inter-author variations such as

writing style, slant, and handedness, and even intra-author differences related to the purpose of writing and

the mood of the author. Taken together, these factors introduce tremendous variability.

At the word recognition level the problem is further confounded due to variations in inter-character spac-

ing. Since hand-print is not constrained to a uniform pitch, adjacent characters frequently touch or have

overlapping bounding boxes. This gives rise to the character segmentation problem in which overlapping

characters must be teased apart prior to recognition. Doing so, however is not so straightforward since

overlapping characters lead to the segmentation and recognition dilemma: in order to segment a pair of

characters, the characters must first be recognized, but in order to recognize the characters, they must first

be segmented. Gi.ven this dilemma and the high degree of variance in hand-print, it is not surprising that

the problem of hand-print recognition has remained largely unsolved.2

In this paper we investigate a particular approach to visual pattern recognition and describe its application

to hand-printed character and word recognition. A key feature of our approach is that we treat spatial images

as time-varying spatio-temporal signals and process them using appropriate connectionist networks. Some

other salient features of our approach are (i) the use of a modular and structured approach for network

construction and (ii) the integration of connectionist components with a procedural ,Component to exploit

the complementary strengths of both techniques.

'The scope of the problem can partially be gauged by the fact that the United States Postal Service alone processes over 80
million hand-printed pieces of mail every day.

2 1n contrast to hand-print recognition, excellent results have been obtained for reading of machine printed text where single

character error rates as low as .01% have been reported (Schiirmann, 1982).
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Motivation

The variance inherent in pattern recognition problems such as hand-print recognition suggests the utiliza-

tion of a system capable of learning complex, linearly non-separable, and fuzzy categories from examples.

Connectionist networks offer a powerful framework for pursuing this approach and their strength has been

demonstrated in a variety of pattern recognition problems including speech recognition (e.g., (Watrous, 1990;

Waibel et al., 1989; Boulard and Morgan, 1994)), face recognition (e.g. (Cottrell and Metcalfe, 1991)) and

even visual hand-print recognition (e.g., (Denker et al., 1989; Le Cun et al., 1990; Keeler et al., 1991)).

Connectionist solutions are also attractive because once a network is trained, its simplicity, homogeneity,

and parallelism can be exploited by VLSI technology. An entire network can be etched on a single microchip

and, consequently, can attain very rapid recognition rates. Implementation is therefore relatively accessible,

inexpensive, and attractive.

Visual pattern recognition schemes typically operate upon static images whereby an image is presented

to a system as a time-invariant signal. This is also true of most connectionist approaches to hand-print

recognition (e.g., (Denker et al., 1989; Le Cun et al., 1990; Keeler et al., 1991)). An alternate viewpoint is to

consider an image to be a time-varying signal which is presented to a system in a piecewise fashion over time.

For example, one could envisage a left-to-right scan of an image in which a system receives the ith column of

the image at time i. Such a scan converts a static image irto a spatio-temporal signal extending over several

time steps. This approach offers several advantages: it leads to shift-invariance along the temporalized

dimension, it explicates the local spatial relationships in the image along the temporalized dimension, it

requires networks with fewer free parameters (weights), and it allows the assimilation of arbitrarily long

images along the temporalized direction. These advantages are discussed in Spction 2.

As is now widely recognized, training random or minimally organized networks using general purpose

learning techniques is not a feasible methodology for obtaining scalable solutions to complex learning prob-

lems. We therefore adopt a more structured approach wherein we incorporate some prior structure in our

networks and embed pretrained feature-detectors along with other "hidden" units. We also adopt a modular

approach in order to make learning tractable. For example, instead of training a monolithic network for rec-

ognizing all the ten digits, we develop a separate network for each digit. Taken together, the use of structure

and modularity allows the incorporation of domain knowledge, reduces the number of free parameters, and

simplifies error analysis.

Although connectionist networks possess attractive features for pattern recognition applications, in many

domains there is abundant domain knowledge that can be utilized effectively by traditional procedural

techniques in a convenient manner.3 Consider recognizing hand-printed ZIP codes, for example. A well-

formed ZIP code will contain either five digits or nine digits (and perhaps a dash). This constraint can
3 This does not mean that connectionist models cannot incorporate such knowledge. The issue is simply one of adopting a

technique that is suitable for expressing and utilizing certain types of knowledge.
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Figure 1: An overview of the hybrid system.

easily be exploited by a procedural controller. Other domain specific knowledge (e.g., statistics gathered

from envelopes arriving at particular postal branches in the case of ZIP codes) and standard dictionary

based algorithms can also be implemented effectively using a procedural approach. This suggests a hybrid

approach, wherein fast and robust connectionist networks perform recognition in concert with a procedural

component capable of incorporating systematic domain knowledge, heuristics, and well-studied algorithms.

1.1 Preview

We have developed a system for hand-printed word recognition using the concepts described above. The

system recognizes well-printed word images containing white space between characters as well as more difficult

images in which characters are ill-formed, disjoint, or overlapping.
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The system consists of two connectionist networks and a procedural controller (see Figure 1). One network,

called the Coarse Recognition Device (CRD), assimilates a word image in a left-to-right fashion over time

and performs coarse character recognition. While doing so, it also hypothesizes segmentation boundaries

between characters. The other network, called the Refined Recognition Device (RRD), specializes in isolated

character recognition, and attempts to classify portions of the image hypothesized to be characters by the

CRD. The two networks are governed by a conventional procedural controller, capable of fusing signals

emanating from the two networks while incorporating domain knowledge. The final recognition is the result

of the combined effort of the three components. Our focus in this work has primarily been the development

of the two connectionist components and the evaluation of the spatio-temporal approach since we perceived

these to be the most challenging aspects our approach. Consequently, the procedural component has received

only limited attention.

The system (without any high-level domain knowledge encoded in the procedural controller) was tested on

three tasks: isolated digit recognition, recognition of overlapping pairs of digits, and recognition of ZIP codes.

On a test set of 2,700 isolated digits, provided by the United States Postal Service, the system achieved a

96.0% accuracy. On a test set of 207,000 isolated digits, provided by the National Institute of Standards

and Technology, a 96.5% accuracy was attained. Six sets of 500 images of digit pairs whose rectangular

bounding boxes overlapped were synthesized from isolated digits for testing. The sets differed depending on

the degree of overlap in their bounding boxes (0%, 5%, or 10% of the first box width). System accuracy

ranged from 87.6% to 65.6%, and it was seen that performance on pairs drawn from the test set closely

tracked performance on pairs drawn from the training set. Finally, recognition performance was measured

on a set of 540 real-world ZIP code images, provided by the United States Postal Service. Using a criterion

in which a ZIP code classification was deemed correct if and only if the produced digit string matched the

complete ZIP code exactly, the system achieved a 66.0% accuracy. Note that the 66% rate is a "worst-case"

measurement-it considers a classification of an entire ZIP code incorrect in the event that any constituent

digit is incorrect.

The rest of the paper is organized as follows. In section 2 we present the spatio-temporal approach to

pattern recognition and argue that it offers a number of advantages. In Section 3 we describe a hybrid and

modular spatio-temporal system for hand-print recognition that instantiates this approach. We discuss the

methodology for training and testing the system in Section 4 and present empirical results in Section 5. We

conclude with a general discussion and an outline of future directions in Section 6.

2 The spatio-temporal approach

Visual pattern recognition schemes, including connectionist ones, typically operate on static images whereby

an image is presented to the system as a time-invariant signal (Denker et al., 1989; Le Cun et al., 1990;
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Figure 2: A static "0" image (left) and the spatio-temporal input generated by a left to right scan (right). In

the latter, the vertical axis enumerates input units, the horizontal axis is time, and the third axis indicates

the Tevel of activation.

Martin and Pittman, 1990). This approach has produced good results in isolated character recognition and

has also been applied with limited success to word recognition (Keeler et al., 1991).

An alternate approach is to convert an image into a time-varying signal by scanning it in one or more

directions and presenting the resulting spatio-temporal signal to the recognition system. For example, if a

system scans an n * m image from left to right, it receives the n pixels in column i of the image at time

i. This converts the static image into a spatio-temporal signal that extends over m time steps and has a

spatial span of n. Figure 2 graphically illustrates this by showing the spatio-temporal signal generated by a

left to right scan of a "0". The image of a "0" is shown on the left and the image as it would be received by

a network's input units is shown to the right. The horizontal (x) axis represents time, while the vertical (y)

axis enumerates 30 input units. The plot for each input unit depicts its activation level over time (the levels

of activation can be viewed as being represented along the z axis orthogonal to the page).

2.1 Advantages of the spatio-temporal approach

Time-varying signals arise naturally in problems such as speech recognition and time series prediction where

the input signal has an explicit temporal aspect. But what is their significance for visual recognition? We

discuss the answer below and point out what we think are inherent advantages in considering images as

spatio-temporal signals.

Most work on visual pattern recognition treats an image as a static two-dimensional pattern. Therefore the

suggestion that images be treated as spatio-temporal signals may seem counter-intuitive. A little reflection,
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however makes it apparent that a static view of visual processing is unrealistic. In general, an agent must

scan its environment in order to locate and identify objects of interest. Even in a more restricted setting such

as recognizing ZIP codes on pieces of mail, a device must scan the face of the envelope to locate the region

containing the ZIP code. Finally, even if the (starting) location is known, scanning is required if the image

contains a number of objects. Observe that reading text essentially involves processing a continuous stream

of visual data having an arbitrary extent. Thus scanning is an integral part of visual processing. On-line

character recognition systems that use values of the position (and optionally, velocity and acceleration) of

the pen over time to recognize characters (e.g., (Guyon et al., 1991; Schenkel et al., 1993)) can also be viewed

as systems that "scan" the characters as they are being constructed over time.

Shift-Invariance

A recognition system which responds identically to an object regardless of the spatial location of the object,

is shift-invariant. In pixel-level image recognition using traditional connectionist networks, the number and

arrangement of input units typically correspond to the number and arrangement of pixels in the input

image. Since an object may appear at different spatial locations in different images, the relevant data may

be assimilated by different sets of input units. Hence, a method must be devised for recognition regardless

of which set of input units receives the data. An obvious but significant advantage of our approach is that

it naturally leads to a recognition system that is shift invariant along the temporalized axis(es). When

an image is scanned, any 'white space' in the image generates a zero input and leaves the network state

unaffected. Thus the network ignores 'white space' and responds to the object it is trained to recognize

wherever (or whenever) it encounters that object in the image. Thus shift-invariance along the temporalized

axis falls out as a natural byproduct of the approach.

The spatio-temporal approach explicates the image geometry

The local spatial relationships in the image along the temporalized dimension are naturally expressed in the

scanned input. Consider a unit in the first hidden layer of a traditional (static) network. The activation

received by this unit from units in the input layer are unlabeled levels of activation, and hence, this unit

cannot determine which inputs come from spatially neighboring pixels. As far as the hidden unit is con-

sidered, the input it receives from an image I is indistinguishable from the input it would receive from the

image I' obtained by permuting the pixels of I. Now consider a hidden unit in the spatio-temporal network.

The inputs to this unit from two adjacent pixels (along the temporalized dimension) become available in

adjacent time steps. Hence the spatio-temporal approach makes spatial locality explicit by mapping it into

temporal locality.
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Reduction in network complexity

In the spatio-temporal approach a spatial dimension is replaced by the temporal dimension and this leads

to models that are architecturally less complex than similar models that use two spatial dimensions. This

reduction of complexity occurs because the spatial extent of any feature in an object's image is much less

than the spatial extent of the object's image. Consider the case where an object's image is n * m. Let the

extent of the image along the temporalized dimension be m and let the maximum width of any feature along

this dimension be k. Typically k will be significantly less than m. A traditional network for recognizing this

object would require n * m input units. Observe however, that the processing ability of a traditional network

can be replicated by a spatio-temporal network containing only n input units connected to hidden units via

a bundle of k links with propagation delays ranging from 1 to k.4 The use of multiple links with varying

delays allows a hiddeti tiode in the spatio-temporal network to receive inputs arising from a limited window

(or receptive field) )f height n and width k. The limited width of this receptive field, however, is sufficient

since it exceeds the ze of all features in the image! Furthermore, as scanning progresses, this receptive field

slides along the scan direction and fully traverses the image. If we assume that hidden units act as feature

detectors then the moving receptive field of a hidden node in the spatio-temporal model leads to an effective

tessellation of the feature detector over the image without the actual (physical) replication of the feature

detector.

In view of the equivalent processing power of a spatio-temporal network and a traditional network, it can

be argued that while the number of links required by a spatio-temporal network is proportional to n * k, the

number of links in a a traditional network will be proportional to n * m. Typically, k is much less than m

and therefore the spatio-temporal model will require significantly fewer links. During training, the number

of links in the network corresponds to the number of free parameters in a non-linear optimization process,

and a substantial reduction in the number of free parameters can yield faster optimization.

Processing arbitrarily long inputs

A common difficulty of the connectionist approach to pattern recognition is that a network must have a fixed

number of inputs, and thus must process images of a fixed size. This makes it difficult for a conventional

connectionist model to recognize words - although progress has been made by replicating and tessellating

network substructures to accommodate images with multiple characters (Keeler et al., 1991). In contrast,

the ability to process arbitrarily long images is inherent in our approach, and offers an alternate means to

process word images within a connectionist framework and relaxes the restriction of fixed-size inputs (see 3).
4 The discussion assumes that input units are fully connected to hidden units. The basic point however, also holds for limited

connectivity between input and hidden layers.
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Addressing the segmentation and recognition dilemma

The use of scanning also partially solves the segmentation/recognition dilemma. Most vision systems perform

a segmentation step and then attempt to recognize the segments. This approach is feasible as long as objects

are non-occluding. If an image contains several objects that touch and/or overlap, segmentation becomes

problematic and the system is faced with the segmentation/recognition dilemma. As explained in Section 3,

the recognizer can continually update the activation level of its output units, as the image is being scanned

from left to right and this activation trace may also be used to estimate the segmentation point.

2.2 Spatio-temporal networks

Processing a spatia-temporal signal requires a model capable of processing time-varying signals. A number

of researchers have proposed network models to represent and process such signals (e.g., (Elman, 1990;

Jordon, 1987; Lapedes and Farber, 1987; Mozer, 1989; Waibel et al., 1989; Watrous and Shastri, 1986). The

connectionist model we employed was inspired by the Temporal Flow Model (TFM) which has achieved good

results in speech recognition (Watrous, 1990; Watrous, 1991). TFM supports arbitrary link connectivity

across layers, admits feedforward as well as recurrent links, and allows variable propagation delays to be

associated with links. These features provide a means for smoothing and differentiating signals, measuring

the duration of features, and detecting their onset. They also allow the system to maintain context over

a window of time and thereby carry out spatio-temporal feature detection and pattern matching. Taken

together, the use of recurrent links and variable propagation delays provide a rich mechanism for short-term

memory, integration and context sensitivity - properties that are essential for processing time varying signals

- and provides a potentially powerful mechanism for performing feature detection and pattern recognition.

Spatio-temporal networks also have a sound basis in biology. It is well known that circuits for auditory

processing in animals make explicit use of propagation delays (e.g., see Edelman et al. 1988). Similarly,

propagation delays, delay tuned neurons, and coincidence detectors are used by bats for echo-location and

by the barn owl for localization of objects via the detection of differences in inter-aural timing (e.g., see

(Carr and Konishi, 1990)).

3 The word recognition system

3.1 Overview

The complete system (refer to Figure 1) consists of three components: the Refined Recognition Device

(RRD), Coarse Recognition Device (CRD), and Procedural Controller (PC). The system's ability to deal

with disjoint as well as overlapping digits stems from the interaction between these components.

Without loss of generality, assume that an image is being scanned in one direction. The spatio-temporal
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Figure 3: Output unit response of the Coarse Recognition Device in response to a set of images depicting

touching or overlapping pairs of digits. Sharp peaks in response correspond to recognition of a digit and

subsequent resetting of the CRD.

signal resulting from the scan is input to a CRD which is a spatio-temporal network trained to act as a

coarse recognizer. The CRD has one output unit for each class in the domain. As the image is scanned, the

activation level of each CRD output unit indicates the degree of support for the presence of a token of the

associated class in the region currently being scanned. When the support for any class reaches a threshold,

the scanning stops and the CRD hypothesizes the presence of a token of the appropriate class. At this time,

the relevant region of the image is extracted and processed by the RRD, the refined recognition network

which specializes in recognizing isolated digits. RRDs are also spatio-temporal networks which process an

extracted region by scanning it in one or more directions. On the completion of processing, the RRD either

confirms or rejects CRD's hypothesis. If the hypothesis is confirmed by the RRD, the system announces the

presence of the appropriate digit at the appropriate location in the image and CRD continues its scan of the

image. If the RRD rejects the hypothesis, it considers (overlapping) regions in the immediate vicinity of the

region under consideration and tries to locate the hypothesized object. If the hypothesized object is still not

found, CRD continues its scan of the image.'

The interaction between the CRD and RRD is mediated by the procedural controller (PC). It is the PC

which detects that one of the CRD output units has reached threshold, extracts the relevant portion of the

image, and passes it on the RRD.

51n the actual system implementation (see Section 5.3), the process described above is preceded by a connected component

extraction step. A connected component is simply a set of "on" points in the image such that any two points belonging to the

same component are connected by a path of adjacent "on" bits. Connected components can be extracted by a simple scan of

the image and a parallel connectionist implementation is described in (Fontaine, 1993). Each connected component so obtained

is first processed by the RRD. If the RRD recognizes a component as a digit with high confidence, the component is deemed to

be that digit. All the remaining components are processed by the CRD and RRD in the manner described above.

7 bipo.9
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Figure 4: RRD output unit response to a typical set of ZIP code digit images

Figure 3 shows the response of the CRD in response to a set of touching and overlapping pairs of digits.

Sharp peaks correspond to recognition of a digit and the subsequent resetting of the CRD by the PC. Figure 4

shows the output unit response of the RRD network to some typical isolated ZIP code digit images.

Basic architecture of CRD and RRD

Both CRD and RRD networks are spatio-temporal networks with multiple hidden layers, feedforward as well

as recurrent connections, and multiple links - with variable delays - between units. Each network typically

consists of four layers: an input layer, two hidden layers, and an output layer.

The number of units in the input layer is determined by the number of image pixels "seen" at each step of

the scanning process. For example, if an n * m image (i.e., an image with n rows and m columns) is scanned

from left to right, the number of input units is n. If the image is scanned in multiple directions, there are

separate banks of input units - one for each scan direction.

The first hidden layer is best viewed as a layer of feature detectors. Each unit in this layer has an associated

receptive field and is expected to detect the occurrence of some salient feature(s) in this field. As pointed

out in Section 2.1, the receptive field of a unit is temporalized and moves in the direction of scan during

processing.
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Most of the units in the feature detector layer are adaptable and during training, 'learn' to detect appro-

priate feature(s) in the image. In addition to these adaptable units, some pre-trained feature detectors can

be embedded in the hidden layer. We do this by including units connected to input units via appropriately

weighted links that enable these units to detect features such as oriented bars. The second hidden layer re-

ceives inputs from the feature detector units in the first hidden layer. Units in the second layer integrate the

response of feature detectors and adapt so as to detect complex features and non-local feature combinations

required to recognize objects in the image. We now describe each component in more detail.

3.2 Refined recognition device (RRD)

The RRD is responsible for accurate recognition of isolated hand-printed digits. We have developed the RRD

in a modular manner in order to incorporate domain knowledge, reduce the number of free parameters, and

simplify network analysis. The RRD consists of ten individually trained Single Digit Recognition Networks,

each of which is responsible for the detection of a particular digit. Each Single Digit Recognition Network

consists of four Single Scan Networks, each of which assimilates data from a different "scan" of the image.

A Single Scan Network is constructed from a number of adaptable layers, operating in conjunction with a

number of pretrained Feature Detection Modules. A Feature Detection Module is formed by the replication

and tessellation of a pretrained Local Receptive Field.

Feature detection modules

Most numerals can be approximately written using four simple stylus strokes: horizontal, vertical, slash,

and backslash. The simplicity and recurrence of these strokes suggests the utility of developing pretrained

feature detection modules, which can be integrated into a larger network. A separate Local Receptive Field

module (or LRF) was pretrained to detect each of these four features over a localized area.

The generic LRF module is seen in Figure 5. It receives input over a spatial field of 4 inputs, a temporal

field of 4 time steps, and consists of 4 input units, 4 hidden units, and a single output unit. Hidden unit n

receives information from all input units, and utilizes n links from each input unit, with respective delays of

1, 2,... , n, creating a spatial window of width n into the temporal signal. As long as a feature to be detected

by an LRF is present in its 4 by 4 receptive field, the LRF will emanate an output signal, albeit with a slight

lag. Various LRF modules for detecting horizontal, vertical, slash, and backslash strokes were trained using

the same generic architecture.

Local detectors can be replicated to tessellate an entire "column" of the image. But note that the tessalation

along the other dimension occurs implicitly when the image is scanned. We refer to a group of identical

and tessellated LRFs as a Feature Detection Module, or FDM. An example of an FDM using 3 LRFs, with

an input unit overlap of 2 and covering a receptive field of 8 inputs, is seen in Figure 6. The dashed box
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Figure 6: A generic Feature Detection Module (FDM)

demarcates the entire FDM.

A desirable trait of the feature detectors is their modularity. Each feature detector is composed from an

LRF building block in a simple manner, and the number of useful feature detectors is limited only by the

number of useful LRFs which can be developed. At a different level of modularity, the feature detection

modules can be inserted into a larger network design. During optimization, the FDMs are masked out and

are not considered part of the optimization (although they could be fine-tuned via training, if desired). This

allows the incorporation of robust feature detectors which yield useful information without increasing the

dimensionality of the optimization.

Single Scan Networks

The signal from each scan is processed by what we refer to as a Single Scan Network (SSN). Figure 7

illustrates the configuration of a SSN, referred to as a Single Scan Network. In this instance, the SSN

operates on 20x20 images, using two pretrained FDMs (a horizontal and slash stroke detector), and several

unstructured hidden layers. The input units pass information along links which are either frozen, if they

are part of a pretrained FDM (dashed lines), or trainable, if they are "regular" links (solid lines). A local

hierarchical structure is used to detect higher order features as information propagates towards the output

unit.

A specific SSN used had the following architecture: Each LRF was connected to 4 (out of 20) adjacent

input units. Each input unit to LRF connection consisted of 3 links having delays of 1, 3, and 5 respectively.

Adjacent LRFs had an overlap of two input units. There were four Feature Detection Modules in the first

hidden layer, with each FDM containing 9 LRFs. The second hidden layer was arranged in 4 banks of 6

units, with each bank receiving input from a corresponding FDM. Each unit in a bank received information

from 4 contiguous FDMs via unit delay links. The units in the second layer of the Single Scan Networks

13
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Figure 7: A Single Scan Network Module (SSN)

were connected to the output unit using links with delays of 1, 3, 5, and 7. Self-recurrent and threshold unit

links were placed on all units. This SSN consisted of 161 units and 1,490 links.

Single Digit Recognition Networks

Consider scanning the image of an isolated digit using a left-to-right column-wise scan. Although useful

discriminatory information may be present in the rightmost columns of the image, this information is not

detected by the network until the final time steps. Consequently, it may be more effective to employ multiple

scans in a variety of directions, where each scan feeds information into a separate group of input units. Use

of multiple scans also adds a degree of redundancy, and hence, robustness to the recognition process.

In the multiple-scan situation, information from each scan is processed independently and concurrently

by the SSNs associated with each scan and the output of each SSN is passed to a single output unit. This

complete network is referred to as a Single Digit Recognition Network (SDRN), an example of which is shown

in Figure 8. 80 input units are used in this case, aligned in 4 banks of 20, which receive information from
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Figure 9: A Refined Recognition Device (RRD)

4 scans. Information from each scan is processed independently in separate SSNs, and the information is

combined at the output level. The dashed box delimits the entire Single Digit Recognition Module. Each

Single Digit Recognition Network is trained to recognize a single digit class, and reject all others.

The Complete RRD

After each Single Digit Recognition Module is trained to recognize its respective digit, all networks are

combined to produce the RRD, capable of recognizing all ten digits. Figure 9 depicts an RRD that uses four

scans.

3.3 Coarse Recognition Device (CRD)

The Coarse Recognition Device is designed to provide coarse character recognition, in the form of hypothesis

formulation, and to estimate inter-character segmentation points based on the available evidence. The CRD

architecture is a special case of the RRD architecture in which only one Single Scan network is used within a

Single Digit Recognition Network. This network receives information from a left-to-right scan. As scanning

progresses and more of the image is viewed, confidence in digit classifications is updated. At each time step,

the CRD generates a signals for all confidences exceeding a thresholds. The CRD therefore produces coarse
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recognition estimates. If only one character is present in the image, the CRD produces a signal after it

has observed enough of the character to recognize it. The multi-character case is similar, except that CRD

signals are also interpreted by the PC as hypotheses for inter-character segmentation points.

A specific CRD used in our experiments possessed the following characteristics: 6 Feature Detection

Modules (FDM) in the first hidden layer contained 9 LRFs each (the LRFs had the same structure as

before). The second hidden layer was arranged in 6 banks of 6 units, with each bank receiving input from a

corresponding FDM. Each unit in a bank received information from 4 contiguous LRFs via unit delay links.

The units in the second layer of the Single Scan Networks were connected to the output unit using links with

delays of 1, 3, 5, and 7. Self-recurrent links were placed on all units. The complete CRD network consisted

of 111 units and 1,118 links.

3.4 Procedural controller (PC)

A traditional component, the Procedural Controller, is used to control system flow, incorporate systematic

domain knowledge, and make final classification decisions.

The PC passes each connected component in the image to the connectionist recognition modules. For each

component, it monitors the output of the CRD as it assimilates the component in a left-to-right fashion and

waits for the CRD to build up recognition confidences. When one or more thresholds are met, the PC sends

the most recently scanned portion of the image to the RRD for verification. If the RRD accepts a singular

hypothesis, a digit is recognized, the CRD is reset to a zero state, and the system continues scanning to

recognize the next digit. If the RRD rejects the estimate, however, the CRD must either continue processing,

or backtrack. For example, if a continued scan increases confidence in the current hypothesis, it is again sent

to the RRD for verification. If a continued scan decreases confidence, then thresholds can be altered to be

less pessimistic and a portion of the image rescanned.

Our current implementation of the word recognition system uses little domain-specific knowledge. This

was for two reasons. First, the purpose of the implementation was primarily to develop the spatio-temporal

connectionist components and benchmark their base discriminatory capabilities. Second, a substantive

amount of work has been done on incorporating domain knowledge into word recognition (Doster, 1977;

Riseman and Hanson, 1974; Shingal and Toussaint, 1979). The following discusses some potential uses of

domain knowledge that would be easy to incorporate in our system design.

Typically, a ZIP code consists of either 5 or 9 digits. This knowledge can be used by the PC to maintain

a running estimate of how many digits remain to be seen, and use this estimate to guide the segmentation

and recognition process. Second, although it is common to have an overlapping pair of digits, it is rare to

have overlapping triplets. Furthermore, the frequencies of two consecutive overlapping digits varies greatly

depending on the class of each digit. Figure 10 (adopted from (Fujisawa et al., 1992)) depicts the frequencies

of touching pair combinations. That is, given a randomly sampled set of touching pairs, the left graph
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Figure 10: Frequencies of touching hand-printed digit pairs

shows how frequently each digit class can be expected to be in the trailing digit position. The right graph

depicts how frequently each digit class can be expected to be in the leading digit position. The PC can

utilize such knowledge when integrating the signals emanating from the R.RD and CRD. In many hand-

print domains, only a subset of all possible strings are legal and hence, a dictionary of legal strings can be

made available. This permits the utilization of predictive dependencies between characters, derived from

statistical analysis of the dictionary (eg, (Bledsoe and Browning, 1959)) and the usage of contextual word

postprocessing algorithms (eg, (Doster, 1977; Shingal and Toussaint, 1979)).

The incorporation of such domain knowledge is fairly straightforward when a procedural component is used.

In particular, our approach allows the PC to interact with the connectionist networks during recognition,

making knowledge-driven recognition possible.

4 Training and testing methodology

4.1 Datasets

A good dataset for hand-printed digit and word recognition should be widely available and voluminous,

with the number of authors approaching the number of images. Furthermore, the authors should be from a

diverse background, and be unaware that their printing will be used to train and test a recognition device.

The "United States Postal Service Office of Advanced Technology Handwritten ZIP Code Database (1987)"

meets all these requirements and was made available for research by the Office of Advanced Technology,

United States Postal Service. The database contains approximately 2,400 grayscale images of hand-printed
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five and nine digit ZIP codes, scanned from letters passing into the Buffalo, New York, Post Office. To

simplify bookkeeping, only five digit ZIP code images were used. Next, the images were converted from

grayscale to binary images. Finally, each ZIP code image was broken down into five individual digits by

making linear slices between consecutive digits, without removing stray marks or extended strokes.

A second database containing pre-segmented hand-printed characters, the NIST Special Database 3, was

made available for research by the National Institute of Standards and Technology. The database contains

313,389 images of isolated alpha-numerals, including 223,125 digits, drawn from a multi-authored set of 2,100

images of full-page hand-printed forms.

4.2 Division of Datasets

The USPS database was used for both training and testing the RRD and CRD, and testing the word

recognition system. The database contains ZIP code images with serial numbers ranging from bd_0001 to

bd.2636., Prior to viewing the database, ZIP codes with serial numbers from bd_0001 to bd.2000 were

designated as training images, while ZIP codes with numbers between bd_2001 and bd.2636 were designated

as test images. The training set consisted of 1,090 five digit ZIP code images. Of the 617 ZIP code images

set aside for testing, only 540 were eventually used. 59 images were excluded because they were 9 digit ZIP

codes. One image contained only 4 digits and was not used, while another which was incorrectly coded was

also discarded. Another 16 images contained dark lines running across them due to postal marks and scanner

anomalies and were discarded. This division yielded 5,450 isolated ZIP code digit images for use in training

the RRD and CRD, 2,700 isolated digit images for use in testing the RRD and CRD, and 540 complete ZIP

code images for testing the word recognition system. Figure 11 illustrates the first 90 ZIP code images in

the test set.

In addition to the above, a set of approximately 16,000 digit images, for use in training the RRD and

CRD, was randomly sampled from the 223,125 isolated digit images in the NIST database. The remaining

set of 207,000 images were reserved for testing the RRD and CRD.

Training set for RRD

The RRD is expected to reject all images which do not contain isolated digits. Since this includes non-digit

blobs, it was necessary to incorporate such images into the training set as negative examples. Therefore,

additional training data for disjoint strokes was synthesized. The RRD is also expected to reject components

containing multiple digits. Therefore a dataset containing multiple digits was created. Finally, the CRD may

signal a recognition hypothesis before it has completely observed the leftmost digit. Consequently, a portion

of the component containing only a partial digit may be sent to the RRD for inspection. The RRD should
6 Images from bd_1001 to bd_1500 are stored on a separate tape and designated by the USPS as test images for complete

ZIP code recognition systems. These images were not used.
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Figure 11: First 90 ZIP codes in the USPS test set
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reject such incomplete digit images and accept more fully formed digits. In view of this another dataset

containing partial digits was constructed..

Synthetic Data for Disjoint Strokes and Partial Images: A total of 44 images containing pieces of

broken "5"s and 405 images containing partial digits were synthesized as negative training instances. To

produce the 44 "5" pieces, 22 images of broken "5"s were selected from the USPS training set. The digit "5"

as chosen because it seems to be the most common digit printed using multiple strokes. A visual inspection

of a sample of 500 ZIP codes revealed a total of 76 instances containing a broken W5", as opposed to only 2

instances of a broken "4".

To produce the 405 partial digit images used to simulate partial data which might be provided by the

CRD in the form of premature conjectures, the following steps were taken: (i) For each digit (except 1), a

set of 45 images containing the digit was randomly sampled from the USPS training set. For each of the 405

images, a block of contiguous columns on the right hand side of the image was deleted. A random number

of columns ranging from 33% to 50% of the total image width were removed. Finally, a completely blank

image was also included to form a set of 450 negative examples of disjoint strokes and partial images.

Synthetic Data for Multiple Digits: A set of 500 images of overlapping digit pairs was synthesized. For

each of the 100 possible digit pair orderings XY (eg, 01, 02, ... , 99), 5 images were generated as follows:

(i) two digits, X and Y, was randomly sampled, with replacement, from the USPS training set, (ii) the

digit images were separately skew-normalized and scaled to a uniform height, (iii) the X and Y images were

horizontally juxtaposed to form a single image (some images were further "squashed" by a random amount

between 0% and 10% of their width to simulate large overlaps), and (iv) the XY image was then scaled to

fit in a 20x20 image, preserving the aspect ratio, and skeletonized. 450 of these images were retained in the

negative training set. 7

The Complete RRD Training Set: For each Single Digit Recognition Network, a total of 2025 positive

and 2025 negative training examples were use-. For the positive instances, 425 samples were drawn from

the USPS dataset, and 1600 samples were drawn from the NIST dataset. For negative instances, 125 images

of each digit class (other than the class being learned) were used in conjunction with 450 partial images

and 450 multiple digit images. Of the negative examples of digits of the class not being learned, 45 were

randomly sampled from the USPS set and 80 were sampled from the NIST set.

Training set for CRD

Unlike the RRD, the CRD need not be explicitly concerned with rejecting images of partial or multiple digits.

Consequently, no synthesized images of partial or multiple digits were required as negative examples in the

CRD training. Earlier experiment, however, had demonstrated the propensity for a single scan network

'In future work, real-world samples should be collected for training, instead of resorting to synthesizing data. This would

not only provide a more realistic sample of overlaps, but also would be reflective of the distribution of the types of overlaps.
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to focus on strokes parallel to the scanning direction. To offset this effect images containing a horizontal

stroke across the entire image, were used as negative examples. In addition, the empty image and 9 images

containing a sparse number of random dots were used as negative examples.

In addition to the above, the USPS and NIST data used to train the RRD was also used to train the CRD.

Thus 2025 images were used as positive single digit recognition examples (425 USPS and 1600 NIST images)

and 2055 images were used as negative examples. These consisted of 225 examples of each other digiL (112

from USPS, 113 from NIST), the empty image, 20 images of horizontal strokes, and 9 random dot images.

4.3 Data Representation

Two methods of representing characters for hand-print recognition devices are typically employed: feature-

level and pixel-level. In feature-level representation, features such as strokes or edges of various orientations

are extracted from an image. The set of features is decided a priori and/or through automatic selection

from a set of large pool of features pool using, for example, information-theoretic measures. In pixel-level

representation, a system operates directly on the pixels of images. Images are however, typically preprocessed

to remove noise and normalize certain types of variations. In general, the structural (visual) integrity of

the character in an image is retained throughout the preprocessing stage. Pixel-level representation forces a

learning method to acquire the features necessary for discrimination. In our work we made use of pixel-level

input representations.
8

Preprocessing

Preprocessing an image can enhance the recognition capabilities of a system by normalizing certain variations.

The following pre-processing steps were methods used on isolated digit images.

Low pass filtering: High frequency noise, or "pepper" noise, commonly occurs in imaging. To reduce

the adverse effects of pepper noise, a mask, shown in Figure 12, was convolved across each image. The

convolution smoothed the image, and subsequent binarization eliminated stray pixels. The binarization

threshold was set such that on-bits were converted to off-bits unless the weighted sum of the mask exceeded

1/2.

Skew normalization: One source of variance produced by differences in handedness and style is the skew

of print. Skew in hand-print can be viewed as a distortion produced by an author favoring, and perhaps

elongating, strokes in certain orientations which (often systematically) deviate in angle from prototypical

stroke orientations. A moment-based transformation to correct individual character skew (Bakis et al., 1968)

was applied to all isolated digit images. This technique is equivalent to shifting rows of bits horizontally to

remove the skew.
8 The use of pretrained feature detectors within the network can however, be thought of as a "hybrid" of pixel and feature

based representations.
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Figure 12: Low pass filter mask used to remove pepper noise

D J
Figure 13: Examples of ZIP code digit images before and after preprocessing

Size Normalization; Isolated digit images for training the RRD were encased in a bounding box by

trimming off surrounding white space and scaled down to a 20x20 image. The aspect ratio of the character

was preserved by padding with white space, if necessary. A nearest neighbor method which sampled pixels

in the original image at regular intervals was used to perform the scaling (Hou, 1983). In the case images

used for training the CRD, the image was scaled down to fit in a rectangle containing twenty rows of pixels

while preserving the aspect ratio. The number of columns therefore varied, depending on the width of the

digit. After scaling, the image was skeletonized. This scaling routine is used for CRD since it processes

arbitrary long inputs.

Skeletonization: Skeletonization was employed to remove variation caused by differing thicknesses of

writing styli and image quantizations. Skeletonization erodes pixels from a binary image until strokes of

only a single pixel width remain. The SPTA skeletonization method (Naccache and Shinghal, 1984) was

used.

Examples of images before and after filtering, deskewing, scaling, and skeletonization are show in Figure 13.

The digits in the top line are the original images and the digits on the bottom line are the digit after

preprocessing.
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4.4 Target Functions

Since spatio-temporal networks generate an output at each time over the assimilation of the input, one must

specify, for each training example, the desired (target) activity of output units at each step of processing.

Several classes of target functions were considered. These included linear, step, Gaussian, and sigmoid

functions. Based on our experience, the following asymmetric sigmoid target was used: the target value at

the first time step for both positive and negative examples was 0.05. At subsequent times t, the target value

for positive examples followed a rising sigmoid curve, while the target value for negative examples stayed

constant at 0 .0 5 .9

Intuitively, for positive examples, the confidence in a particular classification should increase slightly

with each time step near the onset of the image. By the midrange of the image, or slightly thereafter,

enough information should have been assimilated to classify the image with some confidence. By the end of

assimilation, the network should be certain that it has seen a particular character class.

Since digits of a particular class may contain instances of widely varying widths and heights, it may be

useful to tailor the target functions to individual examples. In the case of the RRD, digits were centered

in a 20x20 image for recognition. A fixed sigmoid target function was found to be adequate for positive

examples. Since multiple orthogonal scans were utilized, at least one single scan network was able to receive

image information to satisfy a fixed target.

Since the CRD uses only one scan and needs to assimilate images of differing widths, it cannot use a homo-

geneous target function over all examples. Furthermore, the CRD must possess shift-invariant characteristics,

allowing it to ignore arbitrary amounts of white space before reaching the onset of a digit. Therefore, the

target function was chosen to be a sigmoid with its onset, inflection point, and duration customized for each

example. To enforce shift invariance, the left side of each positive example was "padded" with a random

amount of white space (from 1 to 30 contiguous columns). The target response during the area of white

space was 0.05. The target response during assimilation of the actual digit was a sigmoid, rising from 0.05

at the onset to 0.95 at its end, with its inflection point placed 60% through the extent of the example.

4.5 Training

Training was done using the second-order quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-

rithm (Luenberger, 1984) using (i) GRADSIM - a system for applying nonlinear gradient optimization tech-

niques to train spatio-temporal connectionist networks from examples (Watrous, 1988) and (ii) GRAD-CM2 a

data-parallel version of GRADSIM implemented on a Connection Machine CM-2 (Fontaine, 1992). In general,

runs were terminated when (1) MSE had fallen below 0.0025, and (2) error reductions were insignificantly

small over a large number of objective function and gradient evaluations.

9 The output values lie in the interval [0,1].
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4.6 Network Scoring

The following methods were used to make classification decisions, based on the output of the network over

time.

Integrated Activation

Since the output unit was trained to respond with increasing activity upon presentation of an positive

example, and respond with non-increasing activity to negative examples, a simple "unit score" based upon

integrated activation was used. The score for a given output unit was determined by summing the individual

activations at each time step over assimilation of the entire image, and then normalizing by the extent of

the image.

In the case where one output unit was employed per class to be recognized (eg, the RRD), a classification

decision was made using a simple winner-take-all approach, wherein the image is classified as belonging to

the class corresponding to the output unit which generated the largest time-normalized integrated output.

The integrated outputs of the units can be interpreted as probability estimations by normalizing the values

to obey the laws of probability (Bridle, 1990). Although this transformation does not affect single object

classification (in a winner-take-all sense), it is useful in the integration of various components of a recognition

system (eg, the RRD, CRD, and PC). The statistical properties of the underlying written language can more

readily be integrated, and communication between the CRD and RRD can be viewed as joint probabilities,

as opposed to suggestive signals. Normalization to estimate probabilities was used in the word recognition

system.

Rejection Criterion

It is often of practical importance to assess the performance of a recognition system by deriving the percentage

of test images that must be rejected as unclassifiable in order to achieve a lower error rate on the remaining

images. Consequently, a rejection criterion was defined. Considering time-normalized integrated activation,

let Ah be the highest activation of the N output units, and let A, be the second highest activation. A

measure of classification confidence, C, was defined to be C = (1 - A,)/(1 - Ah).

Since Ah, A, E (0,1), and A. < Ah, we have C > 1. Larger values of C indicate more confident classifica-

tions. The rejection criterion was then defined such that for some f > 0, if C < (1 + c), then the image was

rejected as being unclassifiable.
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Figure 14: USPS test images misclassified by the RRD

5 Results

5.1 Refined recognition device (RRD)

On the NIST test set of 207,000 isolated digit images, an accuracy of 96.5% was achieved at a 0% rejection

rate. On the USPS test set of 2,700 images, an accuracy of 96.0% was obtained with no rejections. All

USPS test set misclassifications are shown (in preprocessed form) in Figure 14. The number before the

slash below each image is the true classification and the number after the slash is the (incorrect) RRD

classification. The USPS accuracy is comparable to other reported results using test samples drawn from

the USPS database (eg, (Denker et al., 1989; Knerr et al., 1992; Le Cun et al., 1990)). Although caution

must be taken in making comparisons since true performance measures cannot be obtained without using

identical test databases, visited only once by each recognition system.
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Figure 15: Percent of USPS digit test set rejected vs RRD accuracy

In real-world implementation, a user is often willing to allow a system to reject a portion of samples as

being unclassifiable in exchange for improved accuracy. The performance of the RRD, as an increasingly

larger percentage of the USPS test images are rejected, is shown in Figure 15. The rejection criterion used

was based on the ratios between the highest and second highest time-integrated unit activations. Figure 15

was derived by incrementing a rejection threshold, E (cf. Section 4.6), until all images were rejected. The

steep rise in accuracy with a small number of rejections is highly desirable, and a 99% accuracy was obtained

upon rejecting 9.5% of the images. A detailed analysis of the RRD performance may be found in (Fontaine,

1993).
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Threshold Case 1 Case 2 Case 3 Accuracy

Value Incorrect Correct IncorrectlI Correct Incorrect

0.4 48 720 48 1746 138 91.3%

0.5 62 335 13 2149 141 92.0%

0.6 68 136 10 2354 132 92.2%

Table 1: CRD hypothesis results on the USPS digit test set

5.2 Coarse recognition device (CRD)

The CRD was trained on single digits in order to enable it to make a good hypothesis concerning the first

digit it encounters as it scans an image in a left-to-right fashion; the focus was not on constructing a CRD

capable of stand-alone recognition of digits. Consequently, the CRD was evaluated on images containing

single digits (the USPS set of 2,700 digits) using two modes of operation. The first mode measured its base

recognition capabilities. The second mode was geared towards inspecting the ability of the CRD to formulate

hypotheses using a simple threshold method.

In the first mode, classification was performed by choosing the output unit which yielded the highest time-

normalized integrated activation. This allowed for variations in the width of each digit without explicitly

changing the target function for each test image. The aim was to evaluate the base discriminatory capability

of the network for isolated digit recognition. On the USPS set of 2,700 digits, the CRD achieved an accuracy

of 94.4% with no rejections. Samples in error are depicted in Figure 16 (for ease of viewing, the samples are

shown scaled to fit in a bounding box).

The second mode of operation was geared towards evaluating the capability of the CRD to produce

hypotheses. Note that the formulation of classification hypotheses is different from that of segmentation

point hypotheses (which is detailed in Section 5.3). The same dataset was used, but instead of making a

classification based on integrated activation (after an entire image is assimilated), a classification was made

when any output unit activation exceeded a predetermined threshold. After a classification was made, the

CRD was reset and scanning continued. Although the first classification produced is of primary interest,

resetting the network and continuing the scan helped gauge the robustness of the CRD to ignore partial

images. The decision process in the second mode of operation resulted in three possibilities for classification:

(1) no output ever exceeded threshold, and hence no classification was made, (2) a classification was made,

the network was reset, and one or more other classifications were subsequently made, and (3) exactly one

classification was made. Case (1) is undesirable in the context of the overall system. Case (2) is acceptable if

the first digit recognized is the actual digit being scanned. Likewise, case (3) is acceptable, if the classification

is correct. Table 1 shows the CRD results using various output unit threshold values. The accuracy was

computed by summing the Case 2 and Case 3 Corrects and dividing by the total number of images (2700).
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Figure 17: Examples of premature, good, and late segmentation points

The results were as expected, with more rejections occurring with higher thresholds, accompanied by fewer

multi-digit classifications. Also, first digit classification accuracy seems acceptable. A detailed analysis of

the RRD performance may be found in (Fontaine, 1993).

5.3 Word recognition system

Before presenting the performance results we outline the functioning of the word recognition system as

currently implemented and discuss the generation of segmentation points based on the CRD response.

Threshold Derivation

The following questions need to be addressed in the spatio-temporal framework: At what point during the

CRD inspection of an image is there enough evidence to hypothesize a classification? How much of the image

should be sent to the RRD, i.e., where should a segmentation be made? Ideally, a hypothesis should be made

as soon as possible during the inspection of an image in order to expedite recognition and the segmentation

point should correspond to the end of the digit being a similated.

Figure 17 depicts three examples of hypothesized segmentation points. The leftmost example shows a

premature segmentation point, the center example shows a good segmentation point, and the rightmost

example shows a late segmentation point. Hypothesizing an early segmentation point has two disadvantages.

First, system throughput is decreased since extra interaction must occur between the CRD and RRD to refine

the segmentation point. Second, if the RRD accepts a premature segmentation point, the CRD is forced

to examine the remaining portion of the digit and may posit "ghost" hypotheses. For example, suppose a

scgrnentation point is hypothesized by the CRD roughly 75% through assimilation of the digit "8", as in

the leftmost example in Figure 17. If the RRD accepts the hypothesis the CRD is forced to examine the

remaining 25% of the image and may hypothesize the presence of a "3" (the RRD was explicitly trained

to reject partial images for exactly this reason). If a segmentation point is positioned too late, such that

it overruns the next digit, both the RRD verification of the current digit and the CRD assimilation of the

next digit can be affected. Fortunately, there exists a simple method for producing fairly good segmentation

points.
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Using the target function for positive instances during CRD SDRN training as a model for future response,

the width of a test digit being assimilated may be estimated at any point during recognition. The target

function used for positive examples during SDRN training was a sigmoid:

1
d(x) = + e-(Mx(x-c)) (1)

where d(x) is the desired output of the SDRN when a given fraction, x, of the image had been assimilated

(x E [0, 1]). M is a (positive real) value controlling the shape of the sigmoid (M = 10.0 was used for the

RRD and CRD), and C is a fixed fraction of the length of the target specifying the location of the inflection

point. If C is 0.5, the output unit response will exceed 0.5 after half of a positive example is assimilated. If it

is assumed that positive test examples will respond according to this target, then half of a digit's width will

have been witnessed by the network when its output unit activation exceeds 0.5. This width may be doubled

to serve as an estimate of the digit's actual width and, consequently, a segmentation point. Although this

scheme does not produce exact segmentation points for all cases, it was found to approximate the point

reasonably well.

In addition to projecting the segmentation point, one also needs to determine the level of output activation

at which the CRD should hypothesize the presence of a digit. The current implementation uses a simple

threshold method and makes a hypothesis when a CRD output unit exceeds a predefined threshold, 0. The

choice of 0 should be large enough to reduce false positives, yet small enough to allow the CRD to make

enough conjectures. In all experiments, 0 was set to be 0.5 (the target value at the inflection point). In

future work, we plan to use a dynamic value of 0 which is derived automatically based on performance results

on aal appropriate set of training data.

Processing by the word recognition system

Given a binary image containing one or more digits, recognition progresses in three stages: (i) a component

recognition stage in which the RRD tries to identify whether any connected components are well-formed

digits, (ii) a rejected component analysis stage in which the CRD and RRD interact to classify the remaining

components of the image, and (iii) a decision making stage to assign a classification and confidence to the

image as a whole.

Stage 1: Connected Component Recognition

Connected components are found and each connected component in the image is passed to the RRD. The

RRD acceptance criterion is set pessimistically, since it is desired to recognize only those components which

can confidently be recogn-zed as digits. The threshold was set such that the RRD recognized isolated digits

with a 99.5% accuracy, rejecting 16.8% of the images. At the end of Stage 1, the RRD acceptance threshold

was altered to be more accepting in Stage 2. The threshold was set to obtain 99.0% accuracy at a 9.5%
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rejection rate.

After the components are sent to the RRD, the skew of each recognized component is weighted by its

mass, and an average measure of skew, p, is produced. The remaining components are deskewed by a factor

of p. In cases where no component was recognized (which rarely occurred), the image is not deskewed.

Stage 2: Rejected Component Recognition

The components not accepted in Stage 1 by the RRD are inspected by the CRD in Stage 2. One or more

components are joined if there is not significant columnar white space between them (where "significant" is

taken to be a fraction of the height of the image-15% in the current implementation).

The CRD then processes each image component separately. During left-to-right assimilation, if any CRD

output unit exceeds the threshold value of 9 = 0.5, a hypothesis is made and a projected segmentation point

is computed. The image area between the last accepted segmentation point (or the image onset) and the

hypothesized segmentation point is sent to the RRD for verification. If the RRD rejects the hypothesis,

the CRD continues. If it accepts, the segmentation point is moved forward until RRD confidence decreases.

The classification and confidence are recorded, and both the CRD and RRD networks are reset. If the CRD

produces no hypothesis during assimilation of a component, it is forced to provide its most confident single

digit classification, regardless of the confidence level.

At this point, a classification for the entire image can be reported. Stage 3, however, combines the evidence

from the individual classifications to produce an overall confidence level.

Stage 3: Decision Making

In the current implementation, recognition of each digit in the image is taken to be independent of the

other digits. Since each classification produces a confidence level expressible as a probability, a classification

probability is assigned to the entire image by multiplying the probabilities associated with each digit classi-

fication. Thus, the only action taken in Stage 3 is a simple multiplication of probabilities. It is considered

a separate stage, however, since algorithms taking into account the underlying distributions can easily be

employed not only to produce more confident classifications based on available domain knowledge, but also

to produce ranked hypotheses concerning missing or extra digits (Doster, 1977; Riseman and Hanson, 1974;

Shingal and Toussaint, 1979).1°
101n Stage 2, the CRD is operating in "forced" mode. In "unforced" mode, if the CRD either cannot produce a hypothesis

while assimilating a component, or if the CRD and RRD cannot agree, a "don't know" value is produced. The cited algorithms

can be used to instantiate the "don't know" values, based on information produced during recognition and the class conditional
probabilities.
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II Set Drawn From % Overlap % Touching 11 % First Correct % Pair Accuracy

1 Train 0 9.6 95.6 87.8

2 Train 5 46.6 92.6 77.0

3 Train 10 63.8 92.8 66.2

-4 Test 0 10.2 95.0 87.6

5 Test 5 45.6 92.6 74.0

6 Test 10 59.8 92.0 65.6

Table 2: Recognition results on synthesized pairs of USPS digits

5.4 System Results

Results on the problems of overlapping digit pair recognition and USPS ZIP code recognition are now pre-

sented. The PC utilized no domain knowledge regarding individual character form, frequency, or contextual

dependencies. In addition, no restrictions were assumed on the number of digits which could appear in an

image, the amount of white space (or lack of white space) between consecutive digits, or author-specific

style. The goal was to evaluate the base discriminatory capabilities of the system without relying on domain

knowledge and heuristics. One underlying assumption, however, was that adjacent characters showed, to

some extent, uniformity in their baselines, skew of print, and size. This is not an overly restrictive assumption

for most hand-print recognition tasks, since authors tend to print uniformly within a word.

Digit Pair Recognition

The capability of the system to segment and recognize overlapping and toucting digit pairs was tested.

Since pairs of digits which touch, or whose fields overlap, are not readily available, test data was synthesized

from the isolated USPS digit images. Images of digit pairs were generated as explained in Section 4.2. The

system was tested on 6 separate data sets. Each data set was comprised of 500 images, with 5 images of each

possible XY combination of the 10 digits. The 6 sets differed depending on whether the digits were drawn

from the training or testing set, and how much they overlapped. Table 2 shows recognition results with

the CRD in forced mode, rejecting no images. The columns of the table represent, respectively, the test set

number, the USPS set from which the digits were drawn (train or test), the overlap percentage used during

pair synthesis, the percentage of the set containing touching pairs as a result of the overlap, the percentage

of the set in which the first digit of the pair was correctly classified, and the percentage of the set in which

the pair was correctly classified. A pair classification was deemed correct if and only if both digits were

correctly classified. Figure 18 depicts the images in Set 6, the most difficult test set, which were correctly

identified.

The percentage of each set containing digit pairs which touch is significant. It is common for traditional

33



* U SO *04

Q37~ 037W t3 13Xq fji

n 34



segmenters to utilize columnar whitespace to hypothesize segmentation points. Yet, since this test data

(by construction) contains no inter-character white space, many segmenters would experience difficulty in

dealing with such samples.

In addition, the percentage of the set in which the first digit of the pair was correctly classified is also

important. If the first digit can be classified with good confidence, which the results suggest, the classification

could be used to help disambiguate subsequent digits, particularly if the class conditional distributions are

known. One could also imagine dual CRDs operating conjointly, one assimilating data from a left-to-right

scan and the other from a right-to-left scan. Their classifications could be compared, with more weight

placed on the first classification of each and less weight on subsequent classifications.

It is difficult to draw performance comparisons to other approaches due to a lack of a standardized test

sets and a dearth of reported results on digit pair (and string) classification. Moreover, many results which

are reported are alphabet-dependent, relying on topological features of the digits to provide hints for seg-

mentation points. These results, however, are comparable to another reported result using synthesized sets

of digit pairs without alphabet-specific knowledge (Keeler et al., 1991). In addition, Table 2 shows little

variation between images created from the training or test sets, suggesting good generalization.

The ability of the system to recognize digit pairs was further tested by assuming it was known that exactly

two digits were present in each image. If such knowledge were available at the onset of recognition, a system

could be tailored to perform more effectively. Here, the assumption was made to facilitate error analysis.

After the system classified an image, if the classification was not exactly two digits long, the image was

considered to be rejected.

Table 3 summarizes recognition results, allowing the system to reject classifications not of length 2. It

depicts the distribution of images rejected due to their length (1 or 3 digits long), the percentage of test set

classification rejected due to length, and the system accuracy on the remaining images. Figure 19 illustrates

all rejected and incorrect classifications. Rejected classifications are prefixed with "R:" in their label. The

true classification appears before the slash in the label of an image, and the system classification appears

after the slash.

As expected, a significant increase in accuracy is achieved. More importantly, however, the results indicate

that the system is being too pessimistic. This is evidenced by the high ratio of the number of rejects of

length 1 to the number of rejects of length 3 and suggests a future area of work.

ZIP Code Recognition

The same system which was applied to digit pair images was also applied to the real-world ZIP codes provided

by the United States Postal Service. The system was able to correctly classify 66.0% of the 540 test images.

A classification was deemed correct if and only if it matched the true ZIP code exactly. Note that the 66%
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Rejected Image Length

Set 1 3 % Total Rejects % Accuracy

1 39 8 9.4 96.9

2 98 5 20.6 97.0

3 149 9 31.6 96.8

4 28 9 7.4 94.6

5 95 12 21.4 94.1
6 1389 29.4 92.9

Table 3: Recognition results on synthesized pairs of USPS digits with length rejection
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Length of Clasification 1 2 3 4 6 17

Number of Occurrences 1 2 10 157 122 14

Table 4: Frequencies of ZIP code rejections due to classifications not of length 5

rate is therefore a "worst-case" measurement-it considers a classification of an entire ZIP code incorrect in

the event that any constituent digit is incorrect.

For the same reasons as digit pair recognition, it is difficult to make performance comparisons for ZIP code

recognition. One benchmark for comparison, however, is the accuracy of the RRD if it were able to inspect

each digit in a ZIP code as if it were an isolated digit. Since the RRD achieved a 96.0% accuracy on the

USPS test set of isolated digits, it can be expected to correctly classify approximately 100 x 0.965 = 81.5%

of the ZIP codes, assuming the digits were correctly isolated. Of course, this is an upper bound (given

the described RRD), and the system cannot be expected to achieve such accuracy for several reasons. A

significant number of the ZIP codes contained touching sequences of digits, disjoint digits, stray blotches,

and ascenders/descenders from other lines on the envelope. More exactly, the set of 540 images contained

97 overlapping digit pairs, more than 80 disjoint digits, several stray blotches, and 17 ascenders/descenders.

The system, as implemented, can hardly hope to classify an image containing a stray blotch or an ascender

(descender) correctly, since it is forced to generate an extra digit classification.

Performance was also measured by rejecting classifications which did not contain exactly five digits. Accu-

racy increased to 80.4% at a 17.8% rejection rate. Figure 20 shows the ZIP codes which were still classified

incorrectly. The label below each image denotes the actual ZIP code (before the slash) and the system's

classification (after the slash).

Table 4 reports the frequencies of the length rejections. Although 70 classification were rejected due to

omission of one or more digits, only 26 were rejected on the basis of extra digits. This suggests that the

either the RRD should be more accepting, the CRD should be less pessimistic, or both.

Using the confidences based on multiplying individual digit classification probabilities, Figure 21 depicts

rejection rate versus accuracy on USPS ZIP codes, assuming 17.8% have already been length-rejected.

6 Discussion

In this section we discuss several issues which arose during the conception, formulation, and implementation

of the spatio-temporal approach to visual pattern recognition, and outline promising avenues for future

work. The problem of recognizing hand-print by machine is neither new nor solved. This investigation can

be placed in proper context if one considers the research and development effort that has been spent on this

problem over the past forty years. The intent of our effort was to investigate an alternate framework for
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Rejections vs Accuracy on USPS ZIP Code Images
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Figure 21: Accuracy vs rejections on 5 digit ZIP code classifications
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coping with some of the limitations inherent in many conventional approaches.

Traditional approaches have proceeded by dividing the word recognition problem into two phases: segmen-

tation into component characters followed by recognition of each component. The vast majority of research

effort has been invested in developing devices capable of carrying out the second phase of recognizing iso-

lated characters, with relatively modest progress made in the segmentation area. To some extent, it is not

surprising that an adequate solution has remained elusive using this methodology. Given an arbitrary alpha-

bet, and a pair of overlapping characters from that alphabet, it is simply not possible to segment the pair

without using a mechanism to (partially or completely) recognize the component characters. This dilemma

strongly suggests the need for the development of alternate models of recognition to cope with such cases.

This investigation has taken a first step towards addressing this fundamental problem.

6.1 Validation of the Spatiotemporal Approach

Do spatiotemporal models offer advantages over traditional feedforward networks on visual recognition prob-

lems such as character recognition? In a theoretical sense, there is a type of equivalence, since a spatiotem-

poral network can be "unfolded" in time and viewed as a spatial network. Structurally, however, emulating

a spatiotemporal network in a feedforward sense involves multiple replication and concatenation of network

structures, depending on the extent of the examples to be assimilated. Thus, from an optimization and

implementation viewpoint, the equivalence is quite tenuous.

Our experience suggests that the spatiotemporal approach has several advantages over feedforward net-

works: shift-invariance and explication of local image geometry along the temporalized axis, a reduction

in the number of free parameters occurs, and the ability to process arbitrarily long inputs. The latter is

particularly relevant in the context of hand-print recognition, since it provides a natural mechanism within

the connectionist framework to cope with the segmentation/recognition dilemma.

Validation through empirical investigation, however, ultimately relies on the produced results. On just the

problem of isolated digit recognition, the utility of the approach was verified, evidenced by recognition results

which are comparable to the current state of the art on a real-world set of difficult digit images. Further, it

was seen that spatiotemporal networks are capable of recognizing images of multiple and overlapping digits.

Good recognition accuracy was achieved on difficult images which many traditional segmenters could not

possibly segment and recognize. Although several areas for improvement were discovered through analysis,

and extensions are possible, the presented results substantiate the approach and warrant further investigation.
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6.2 System Formulation

Refined Recognition Device

Ideally, the RRD should recognize characters in the target alphabet and reject all non-character blobs. Of

course, the dimensionality of the input space makes the derivation of such a device very difficult. From a

system development point of view, however, it suffices to construct an RRD capable of recognizing char-

acters and rejecting non-character blobs which it is likely to encounter. This point of view was taken into

consideration during RRD development for digit recognition. Within the context of the envisaged system,

it was decided that the RRD should be capable of rejecting multiple and partial digits, since it was likely to

encounter these cases.

By setting CRD hypothesis parameters conservatively, it was hoped that it would be better to venture

premature segmentation point hypotheses rather than late hypotheses, allowing the CRD/RRD interaction

to derive a suitable segmentation point. Thus, negative training instances of "partial multiples" were not

used. However, two problems cropped up as a result of not employing such training examples. First,

although CRD parameters were set to produce conservative (premature) segmentation point estimates, late

segmentation point estimates were occasionally made. Second, in the implemented system, if a hypothesis

was accepted by the RRD, the hypothesis boundary was moved forward, and the process repeated until

RRD confidence was reduced. This sometimes resulted, somewhat surprisingly, in an accurate segmentation

point being expanded to a late segmentation point, as RRD confidence (incorrectly) did not recede, despite

the fact that it was receiving a partial multiple. To a large extent, the CRD/RRD interaction relies on the

ability of the RRD to make appropriate rejections. Therefore, in future work, the RRD should be trained

on a sizable body of negative partial, multiple, and partial multiple images.

Coarse Recognition Device

The CRD's recognition performance fell short of the RRD's. The shortcoming was due to the combination of

the increase in learning task complexity and the decrease in network mechanism. It appears that the overall

performance can be improved if the target function is aligned later in the assimilation process so that the

the CRD can witness a larger portion of the image before making hypotheses.

Although results on recognition of difficult digit pair images suggest that vertical segmentation produces

good results on the set of digits, we need to look at other sorts of segmentation boundaries. One should not

expect that a vertical slice will always segment a digit pair into relatively clean images of two (fully-formed)

digits. It should also be possible to improve vertical segmentation by augmenting the RRD training set with

images derived by vertically slicing multi-digit images. That is, starting with a set of overlapping digit pairs,

each pair could be vertically sliced at a "good" location, and the component images used as positive training

examples for the RRD.
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The methodology used to train the CRD, in which isolated digits were used as training examples and

positive instances were trained to respond in accordance to rising sigmoid targets, is only one of several

possible approaches. An interesting alternative is to train the CRD on multiple digit images in order

to explicitly enforce segmentation point hypotheses. Using target functions comprised of multiple Gaussian

peaks, centered at the midrange of each digit, provides a method for the CRD to recognize pairs independently

of the RRD.

Another approach is to perform a local search in the area of a hypothesized segmentation point, sending

each portion to the RRD. This could correct the problem of late segmentation points. A method which

seems likely to produce very good results (albeit somewhat brute-force) is to employ two CRDs, one of

which assimilates images in a left-to-right fashion and the other in a right-to-left fashion. Since it was seen

that the CRD was capable of quite accurately recognizing the first digit of a pair, the classifications made by

each of the two CRDs could be weighted accordingly. In the single digit case, more confident classification

could be made. And, problems involving inter-class similarity of localized regions could be reduced.

Finally, it should be noted that the CRD may be quite useful in combination with other segmentation

approaches, since it is capable of producing a good estimate of the region of overlap between digits.

Procedural Controller

In the implemented system, the PC was deemphasized and charged primarily with simple monitoring and

decision making tasks. The incorporation of procedural algorithms utilizing the statistical properties of

the written language can greatly augment performance, both during and after the connectionist networks'

inspection of the image. Although postprocessing algorithms have been studied and found to be effective

in augmenting recognition performance (eg, (Doster, 1977)), they are of less interest here, since they may

easily be added to any recognition system.

The usage of character distributions and other domain knowledge during processing is an advantage offered

as a consequence of the spatiotemporal approach. As the CRD is assimilating an image, tor example, more

of the spatial structure of the image is revealed. As classification confidences build, one could imagine

interpreting the confidences with respect to the statistical distributions of the language, thereby affecting

CRD hypotheses. In addition, procedural algorithms could be interjected before assimilation is complete, in

order to verify hypotheses or refine segmentation points.

6.3 Extensions

The extension of the approach to other character sets is of great practical interest. Consider an N class

recognition problem, in which the goal is to classify an object as belonging to one of N classes. Assuming a

forced classification, a total of N(N-1) inter-class boundaries exist. The extension from the set of 10 digits
2
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Figure 22: An example of the role of context

to the set of 36 digits and lower case letters, for example, results in an increase from 45 to 630 inter-class

boundaries."' Hence, any recognition system is faced with a more difficult recognition task as the number

of classes increases.

Both the number of character classes and the geometric forms of the character classes contribute to the

difficulty of recognizing overlapping characters. As illustrated in Figure 22, recognizing certain characters,

or sequences of characters, is not always possible. Due to the high-level nature of context affects involved,

such cases are of limited interest. However, similar examples requiring inspection of localized areas are

necessary for recognition and are of interest. Due to the nature of the basic CRD scheme, in which an image

is assimilated in a left-to-right fashion over time, certain combinations of adjacent character can produce
"ghost characters", requiring assimilation beyond the true segmentation point in order to disambiguate the

pair. For example, consider overlapping a lower case "c" (on the left) with a lower case "r" (on the right).

The "a•" sequence contains a "ghost image" of an "a" (or possibly an "o") and as the CRD scans in a left-

to-right fashion, it is necessary to progress beyond the true segmentation point in order to witness enough of

the "r" in order to disambiguate the sequence. Further, what if the language in question contains characters

whose overlaps cannot be adequately segmented via vertical strokes?

These concerns are justified, insofar as they question the ability of the implemented system to operate on

other alphabets. The hand-printed digit recognition system described in detail in this paper, however, is only

one possible instantiation of the general framework. Alternate mechanisms, some of which were described

earlier in this section (eg, dual using CRDs or training the CRD to respond in Gaussian peaks, etc), can be

used to augment the shortcomings of the system, as implemented. In the simplest case, the CRD provides

valuable information (eg, good first character recognition rates) and can be integrated with other methods.
"This number is slightly less, of course, if similar character classes (eg, the letter "o" and the number "0"), are considered

as one. Aad, it is possible (albeit unlikely) that additional classes induce only trivial (easily derived) inter-class boundaries.
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Conclusion

Given the success of spatiotemporal connectionist networks in hand-print recognition, it is likely that they can

be applied successfully to other visual recognition problems. Initial investigation into using spatiotemporal

networks to recognize simple objects has demonstrated a stronger recognition dependence on object vertices

than on edge mid-sections (Farid et al., 1993), as expected according to a theory of human perception

described in (Biederman, 1985). Another difficult recognition problem, discriminating between cancerous

and non-cancerous cells, is being inspected, and initial results are encouraging.

In summary, the opportunities for future research in the application of spatiotemporal connectionist net-

works to hand-print recognition, as well as to other visual recognition domains, are plentiful. The described

advantages of the approach, combined with its demonstrated success to hand-print recognition, warrant

further investigation.
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Abstract

We map structured connectionist models of knowledge representation aid reasoning onto existing gen-
eral purpose massively parallel architectures with the objective of developing and implementing practical,
rapid or real-time reasoning systems. SHRUTI, a connectionist knowledge representation and reasoning
system which attempts to model reflexive reasoning, serves as our representative connectionist model.
Rpalizations of SHRUTI are developed on the Connection Machine CM-2-an SIMD architecture-and on
the Connection Machine CM-5-an MIMD architecture.

Though SIMD implementations on the CM-2 are reasonably fast-requiring a few seconds to tens
of seconds for answering queries-experiments indicate that SPMD message passing systems are vastly
superior to SIMD systems and offer hunl'red-fold speedups. The CM-5 implementation can encode large
knowledge bases with several hundrc.i thousand (randomly generated) rules and facts, and respond in
under 500 milliseconds to a range of queuies requiring inference depths of up to eight.

This work provides some new insights into the simulation of structured connectionist networks on
massively parallel machines and is a step toward developing large yet efficient knowledge representation
and reasoning systems.



1 Introduction

Connectionist models are fast developing into widely explored architectures for cognition and intelligence.
These models use a large number of simple nodes which are profusely interconnected by direct hard wired
links, carrying simple, scalar messages. Massive parallelism is an important feature of any connectionist
model. Since any system that purports to model human cognition must use some form of massive paral-
lelism if it has to react in real-time (Feldman and Ballard, 1982; Shastri, 1991; Newell, 1992), structured
connectionist models-with their inherent parallelism and their ability to represent structured knowledge-
seem to be promising architectures for high-level--or symbolic-processing. Several structured connectionist
models have been proposed for rule-based reasoning, language processing, planning and other high-level cog-
nitive processes (Barnden and Pollack, 1991). From a practical standpoint, if such systems have to be fast,
efficient and usable, we will need to be able to simulate or emulate them on massively parallel platforms.
From a cognitive standpoint, where our concern is to design, test and prototype connectionist models of
cognition, we would require suitable platforms for implementing and experimenting with these highly par-
allel models. Hence mapping connectionist systems onto currently existing massively parallel architectures
appears to be an avenue worth .xploring.

In this report we investigate the mapping of structured connectionist models of knowledge representation
and reasoning onto existing general purpose massively parallel architectures with the objective of developing
and implementing practical, real-time reasoning systems. We define rapid or real-time reasoning to be
reasoning that is fast enough to support real-time language understanding. We can understand written
language at the rate of about 150-400 words per minute-i.e., we can understand a typical sentence in a
second or two (Shastri and Ajjanagadde, 1993).

SHRUTI, a connectionist knowledge representation and reasoning system which attempts to model reflexive
reasoning (Shastri and Ajjanagadde, 1993), will serve as our representative connectionist model. Efficient
realizations of SHRUTI are developed on the Connection Machine CM-2-an SIMD architecture-and on the
Connection Machine CM-5-an MIMD architecture.' We shall use the term parallel rapid reasoning system
to designate these SHRUTI-based, massively parallel, systems that can handle very large knowledge bases and
perform a large yet limited class of reasoning in real-time.

Though SIMD implementations on the CM-2 are reasonably fast-requiring a few seconds to tens of
seconds for answering simple queries-experiments indicate that SPMD message passing systems are vastly
superior to SIMD systems and offer hundred-fold speedups. The CM-5 implementation can encode large
knowledge bases with several hundred thousand (randomly generated) rules and facts, and respond in under
500 milliseconds to a range of queries requiring inference depths of up to eight.

In addition to developing viable tech,. Jiogy for supporting large-scale knowledge base systems, this work
provides some new insights into the ýu•,i• ion of structured connectionist networks on massively parallel
machines and is a step toward develop 7 k. ge yet efficient knowledge representation and reasoning systems.

Section 2 is an overview of the system described in the rest of this report. Section 3 provides a brief
description of SHRUTI, our representative structured connectionist knowledge representation and reasoning
system. Section 4 is a general discussion of the issues involved in mapping SHRUTI onto massively parallel
machines. Section 6 deals with the design, implementation and characteristics of the SPMD parallel rapid
r( soning system on the CM-5. Similar issues for the SIMD CM-2 architecture are considered in Appendix A.

2 Overview of the System

The parallel rapid reasoning system supports the encoding of very large knowledge bases and their use for
real-time inference and retrieval. Toward this end, the system includes the following suite of programs and

1 Though the CM-5 is an MIMD architecture, it can only be used in SPMD (Single Program Multiple Data) mode with
current software. See Section 6.



tools:

" A parser for accepting knowledge-base items expressed in a human readable input language. The
language's syntax is similar to that of first-order logic (see Appendix D).

" A preprocessor for mapping a knowledge base onto the underlying parallel machine. This involves
mapping the knowledge base to an inferential dependency network whose structure is analogous to
that of SHRUTI, and partitioning this network among the processors of the parallel machine.

" A reasoning algorithm for answering queries. This runs on the parallel machine and efficiently mimics
the reasoning process of our connectionist models.

" Procedures for collecting a number of statistics about the knowledge base and the reasoning process.
These include the distribution of knowledge base items among processors, the processor load and
message traffic during query answering, and a count of knowledge base items of each type (rules, facts,
concepts, etc.) activated during processing.

" A utility for generating large psuedo-random knowledge bases given a specification of broad structural
constraints. Examples of such constraints are: the number of knowledge base items of each type, any
subdivision of the knowledge base into domains, the ratio of inter- and intra-domain rules, and the
depth of the type hierarchy.

" Several tools for analyzing and visualizing the knowledge base and the statistics gathered during query
answering.

This collection of programs and tools facilitates automatic loading of large knowledge bases, incremental
addition of items to an existing knowledge base, posing of queries and recording of answers, and off-line
visualization and analysis of system behavior. It also allows a user to construct large artificial knowledge
bases for experimentation.

The system is interactive and allows the user to load and browse knowledge bases, and process queries
by issuing commands at a prompt. At the same time it is also possible to process command files and use
the system in an unattended batch processing mode.

3 SHRUTI-A Connectionist Reasoning System

SHRUTI, a connectionist reasoning system that can represent systematic knowledge involving n-ary predicates
and variables, has been proposed by Shastri and Ajjanagadde (Shastri and Ajjanagadde, 1993; Aijanagadde
and Shastri, 1991). SHRUTI can perform a broad class of reasoning with extreme efficiency. The time taken
by the reasoning system to draw an inference is only proportional to the length of the chain of inference and
is independent of the number of rules and facts encoded by the system. The reasoning system maintains
and propagates variable bindings using temporally synchronous-i.e., in-phase-firing of appropriate nodes.
This allows the system to maintain and propagate a large number of variable bindings simultaneously as long
as the number of distinct entities participating in the bindings during any given episode of reasoning remains
bounded. Reasoning in the proposed system is the transient but systematic flow of rhythmic patterns of
activation, where each phase in the rhythmic pattern corresponds to a distinct entity involved in the reasoning
process and where variable bindings are represented as the synchronous firing of appropriate role and filler
nodes. A fact behaves as a temporal pattern matcher that becomes 'active' when it detects that the bindings
corresponding to the fact are present in the system's pattern of activity. Finally, rules are interconnection
patterns that propagate and transform rhythmic patterns of activity.

SHRUTI attempts to model reflexive reasoning over a large body of knowledge. SHRUTI has been extended
in (Mani and Shastri, 1993) to effectively reason with a less restricted set of rules and facts and enhance the
system's ability to model common-sense reflexive reasoning.

2



fro ja John C:CaIU M

IMinipu l cc:uv_

g~*buy Fi _lV____

Input o c-.oiw

toay _____________ _

Figure 1: (a) An example encoding of rules and facts. (b) Activation trace for the query can-
sell(Mary, Book))?.

We briefly describe the reasoning system using an example. Figure la illustrates how long-term knowledge
is encoded in the rule-based reasoning system. The network encodes the following rules and facts:

Vz,y~ [ g~ve(z,p,z) =, own(y,z) ],
V, y [ bup(z,y) ~own(n,y) J,
Vr, y ( otn(z,y) =* can.-sel(',y) ],
give(John, Mary, Book)l),
bttg(John,x), and
own(Mary, Bali1).

Rule and fact encoding makes use of several types of nodes (see Figure 2): p-btu nodes (depicted as circles),
r-and nodes (depicted as pentagons) and r"-or nodes (depicted as triangles). These nodes have the following
idealized behavior: On receiving a spike train, a p-btu node produces a spike train that is synchronous (i.e.,
zn-phase) with the driving input. We assume that p-btu nodes can respond in this manner as long as the
inter-spike distance, ir, lies in the interval [Irm,n., •,o] Here 1'm,,, and •'n. are the minimum and maximum
inter-spike gaps for which the system can sustain synchronous activity (Shastri and Aijanagadde, 1993). A
r-and node behaves like a temporal AND node, and becomes active on receiving an uninterrupted pulse train.
On becoming active, a r-and node produces a pulse train comparable to the input pulse train. A r"-or node
on the other hand becomes active on receiving any activation; its output is a pulse whose width and period
equal •,az Figure 2 summarizes node behavior. The encoding also makes use of inhibitory modifiers--links
that impinge upon and inhibit other links. A pulse propagating along an inhibitory modifier will block a
pulse propagating along the link it impinges upon. In Figure la, inhibitory modifiers are shown as links
ending in dark blobs.

Each entity in the domain is encoded by a p-btu node. An n-ary predicate P is encoded by a pair of
r-and nodes and n p-btu nodes, one for each of the ni arguments. One of the r-and nodes is referred to as the
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Figure 2: Behavior of p-btu, r-and and r-or nodes in the reasoning system.

enabler, e:P, and the other as the collector, c:P. In Figure la, enablers point upward while collectors point
downward. The enabler e:P becomes active whenever the system is being queried about P. On the other
hand, the system activates the collector c:P of a predicate P whenever the system wants to assert that the
current dynamic bindings of the arguments of P follow from the knowledge encoded in the system. A rule is
encoded by connecting the collector of the antecedent predicate to the collector of the consequent predicate,
the enabler of the consequent predicate to the enabler of the antecedent predicate, and by connecting the
arguments of the consequent predicate to the arguments of the antecedent predicate in accordance with the
correspondence between these arguments specified in the rule. A fact is encoded using a r-and node that
receives an input from the enabler of the associated predicate. This input is modified by inhibitory modifiers
from the argument nodes of the associated predicate. If an argument is bound to an entity in the fact then
the modifier from such an argument node is in turn modified by an inhibitory modifier from the appropriate
entity node. The output of the r-and node is connected to the collector of the associated predicate. Figure ls
shows the encoding of the facts give(John, Mary, Book)) and buy(John, z). The fact give(John, Mary, Book1)
states that 'John gave Mary Bookl' while buy(John,z) implies that 'John bought something'.

3.1 The Inference Process

Posing a query to the system involves specifying the query predicate and its argument bindings. The query
predicate is specified by activating its enabler with a pulse train of width and periodicity 7r. Argument
bindings are specified by activating each entity, and the argument nodes bound to that entity, in a distinct
phase, phases being non-overlapping time intervals within a period of oscillation.

We illustrate the reasoning process with the help of an example. Consider the query can-sell(Mary,
Bookl)? (i.e., Can Mary sell Booki?) The query is posed by (i) Activating the enabler e:can.sell; (ii)
Activating Mary and p-seller in the same phase (say, pi), and (iii) Activating Book) and cs-obj in some other
phase (say, p2). As a result of these inputs, Mary and p-seller fire synchronously in phase p1 of every period
of oscillation, while Book) and cs-obj fire synchronously in phase p2. See Figure lb. The activation from the
can-sell predicate propagates to the own, give and buy predicates via the links encoding the rules. Eventually,
as shown in Figure 1b, Mary, p-seller, owner, buyer and recip will all be active in phase Pl, while Book),
cs-obj, o-obj, g-obj and b.obj would be active in phase p2. The activation of e:can-sell causes the enablers of
all other predicates to go active. In effect, the system is asking itself three more queries-own(Mary,Bookl)?,
give(z, Mary, Bookl). (i.e., Did someone give Mary Book1?), and buy(Mary,Bookl)?. The r-and node Fl,
associated with the fact give(John, Mary, Bookl) becomes active as a result of the uninterrupted activation it
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receives from e:glie, thereby answering give(r, Mary, Bookl)? affirmatively. The activation from FI spreads
downward to c:gtve, c:own and c:can-sell. Activation of c:can-sell signals an affirmative answer to the original
query can-sell(Mary, Bookl)?.

3.2 The Type Hierarchy

Integrating a type hierarchy with the reasoning system (Mani and Shastri, 1993) allows the use of types
(categories) as well as instances in rules, facts, and queries. This has the following consequences:

"* The reasoning system can combine rule-based reasoning with inheritance and classification. For exam-
ple, such a system can infer that 'Tweety is scared of Sylvester', based on the generic fact 'cats prey
on birds', the rule 'if z preys on y then y is scared of z' and the is-a relations 'Sylvester is a cat' and
'Tweety is a bird'.

"* The integrated system can use category information to qualify rules by specifying restrictions on the
type of argument fillers. An example of such a rule is:

Vz:antmate, y:sohd-obj ( walk-into(z,y) =: hurt(z) I

which specifies that the rule is applicable only if the two arguments of 'walk-into' are of the type
'animate' and 'solid-object', respectively.

Each entity (concept or instance) is now represented as a cluster of nodes and is associated with two
type-hierarchy switches-a top-down T-switch and a bottom-up T-switch. Any entity can now accommodate
up to k, dynamic instantiations, k, being the multiple instantiation constant for concepts. The T-switches
regulate the flow of activation so as to ensure efficient and automatic dynamic allocations of instantiations.

3.3 Multiple Dynamic Instantiation of Predicates

Extending the reasoning system to incorporate multiple instantiation of predicates (Mani and Shastri, 1993)
provides SHRUTI with the ability to simultaneously represent multiple dynamic facts about a predicate. For
example, the dynamic facts loves(John, Mary) and loves(Mary, Tom) can now be represented at the same
time. As a result, we can represent and reason using a set of rules which cause a predicate to be instantiated
more than once. We can now encode rules like:

Vz, y [ sibling(z,y) *- sibling(y,z) ] and
Vz, y, z [ greater-than(z,y) A greater-than(y,z) :, 9reater-than(z,z)]

thereby introducing the capability to handle limited symmetry, transitivity and recursion.

Introduction of multiple dynamic instantiation of predicates relies on the assumption that, during an
episode of reflexive reasoning, any given predicate need only be instantiated a bounded number of times. In
(Shastri and Ajjanagadde, 1993), it is argued that a reasonable value for this bound is around three. We
shall refer to this bound as the multiple instantiation constant for predicates, k2.2

Predicate representations are augmented so that each predicate can represent up to k2 dynamic instan-
tiations. Each predicate also has an associated multiple instantiation switch (or M-switch) through which
all inputs to the predicate nodes are routed. The switch arbitrates the input and brings about efficient and
automatic dynamic allocation of predicate instantiations.

2 This is the factor that limits symmetry, transitivity and recursion, since each predicate can accommodate at most k2

dynamic instantiations.
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4 Mapping SHRUTI onto Massively Parallel Machines

When mapping SHRUTI onto any massively parallel machine, several issues need to be taken into consideration
in order to obtain effective performance and to strike a compromise between resource usage and response time.
Several of these issues are discussed here. The discussion here is applicable when mapping SHRUTI onto any
massively parallel machine. Later sections bring out how these issues are resolved in actual implementations
on the CM-2 and CM-5. We have chosen the CM-2 and CM-5 as our target machines since they are
representatives of their class and offer similar user interfaces and program development environments.

4.1 Exploiting Constraints Imposed by SHRUTI

As brought out in the previous sections, SHRUTI is a limited inference system, and imposes several psycho-
logically and/or biologically motivated constraints in order to make reasoning tractable:

"* The number of distinct entities that can participate in an episode of reasoning is bounded.

"* Entities and predicates can only represent a limited number of dynamic instantiations.

"* The form of rules and facts that can be encoded is constrained.

"* The depth of inference is bounded.

The motivation for these constraints and their impact are discussed in (Shastri and Ajjanagadde, 1993). In
terms of mapping SHRUTI onto parallel machines, it would be to our advantage to exploit these constraints
to the fullest extent to obtain efficiency, speed and rapid response with large knowledge bases. Of course, if
any of these constraints can be relaxed without paying a severe performance penalty, we would like to obtain
a more powerful system by relaxing these constraints.

4.2 Granularity

For effective mapping, the SHRUTT network encoding a knowledge base must be partitioned among the
processors in the machine. The network partitioning can be specified at different levels of granularity. At
the fine-grained network-level, the partitioning would be at the level of the basic nodes and links constituting
the network. A more coarse-grained knowledge-level mapping would partition the network at the level of
knowledge elements like predicates, concepts, facts, rules and is-a relations.

The appropriate level of granularity for a given situation depends on several factors including the char-
acteristics of the network, the processing power of individual processors on the machine and interprocessor
communication mechanisms.

4.3 Network-Level Mapping

At this fine-grained level of granularity, the network is viewed as a collection of nodes and links. Factors
that need to be taken into consideration when using network-level partitioning include:

Processor Allocation Nodes and links in the network should be assigned to processors on the target
machine so as to minimize response time. Several options are possible: Each node and link could be
assigned to a separate processor; groups of nodes and/or links could be assigned to a single processor;
processors could be partitioned so that some handle only nodes and some handle only links; and so on.

Nodes The network which SHRUTI uses to encode a knowledge base consists of several different types of
nodes. A given processor could handle only one type of node or could simulate an assorted combination
of node types. The complexity of the node function should also be taken into consideration.
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Links Like nodes, the links can also be of several types-including weighted, unweighted and inhibitory
links. Placement of the links (on processors) relative to the placement of the nodes they connect is
important since this is a major factor determining the volume of interprocessor communication.

Communication and Computation The partitioning scheme used to assign network components to pro-
cessing elements should take into account the balance of computation and communication in the re-
sulting system. Communication between network nodes, and hence interprocessor communication,
is an essential aspect of connectionist network simulation. Trying to eliminate or unduly minimize
interprocessor communication could lead to severe load imbalances whereby a few of the processing
elements are overburdened with computation. Trying to evenly spread the computational load among
the processing elements could result in increased communication and poor performance. A well de-
signed system should strike a compromise between communication and computation so as to achieve
effective performance.

4.4 Knowledge-Level Mapping

Knowledge-level mapping views the network at a relatively abstract level. At this granularity, knowledge
base elements like predicates, concepts, facts, rules and is-a relations form the primitives. As is evident from
Section 3, each primitive is constituted by a group of nodes and/or links. The behavior of these primitives
is directly simulated without recourse to the underlying nodes and links constituting the primitive. Issues
at this level include:

Predicates Each predicate could be assigned to a separate processor, or a group of predicates could be
assigned to a single processor. In the latter case, predicates constituting a rule could all be placed on
the same processor or could be scattered on different processors. Grouping predicates on any given
processor could reduce the number of messages required to spread activation, but would make load
balancing more difficult.

Facts Facts could be stored on the same processors to which the corresponding fact predicates have been
assigned. An alternative approach would be to have dedicated processors for encoding facts. Such
processors will receive inputs from both the fact predicate and the type hierarchy, and will signal fact
matches globally or by communicating with the processor containing the predicate under consideration.
In any case, we may need some mechanism to circumvent the situation where processors run out of
memory since predicates could have a large number of associated facts.

Concepts Concept clusters are used in the type hierarchy to represent types and instances. Apart for being
linked up to form the type hierarchy, these clusters must also cor.municate with the rule base. Careful
choice of the mechanisms used to communicate the firing phabe of concepts to the rule base could make
the system more effective and reduce the number of messages exchanged in the system.

Rules When encoding rules, effective placement of predicates can minimize communication costs. The
arbitration mechanism for accommodating multiple instantiations of a predicate also needs to be taken
into account.

e When encoding rules, there are several choices available for the placement of predicates consti-
tuting the rule:

- Depending on the processor allocation scheme used, we could allocate predicates occurring
in a rule to the same processor. This would reduce interprocessor communication since fewer
messages are required when the rule fires. This may not be easy to accomplish if predicates
present in the rule being encoded have already been assigned to different processors.

- A weaker form of the above scheme is to allocate predicates in a rule locally-i.e., on nearby
processors. This scheme is easier to execute but will require relatively more messages in order
to fire a rule.
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- The other extreme is to scatter the predicates randomly. Though this would require more
messages, and messages would travel an average distance longer than for the previous two
schemes, there are indications that random allocation may distribute messages uniformly over
Lhe entire machine instead of localizing it to "hot spots" where all the action happens, and
would therefore reduce the incidence of message collisions (Leighton, 1992). Further, this
scheme would provide better load balancing when answering a query.

" Identifying suitable performance measures and attempting to optimize these will aid in the ob-
jective placement of predicates when encoding rules. The performance measure could take into
account factors like load balancing, cost of computation and communication, etc. It should be
easy to compute the measure-or at least approximate it-using only local information.

" Predicate instance arbitration mechanisms ("switches") may need to be redesigned. When one or
more predicates are assigned to each processor, switches may be unnecessary. Space ("banks")
can be allocated for k2 instances of each predicate. Incoming activation can be received in a buffer
and then allocated to an empty bank under program control.

Type Hierarchy Most of the issues raised above will also need to be reconsidered with respect to the
location and interaction of concepts in the type hierarchy. We would also need to streamline the
interaction between the type hierarchy and the rule base for enhanced efficiency and effectiveness.
Extending the scheme mentioned above for dealing with multiple instantiation, we might be able to do
away with the type hierarchy T-switch.

It should be evident that most of the concerns addressed above are intertwined in that choosing one
aspect will affect the choice of other aspects of the mapping. On a global scale, our aim is to develop an
efficient and effective mapping by ensuring load balancing, minimizing interprocessor communication and by
efficiently using resources including processors and memory.

Further, we believe that knowledge-level partitioning is the appropriate granularity for both the CM-2
and CM-5. The processing elements on the CM-2 are reasonably powerful (Appendix A) while the processing
elements on the CM-5 (Section 6) are full-fledged SPARC processors. Thus, subnetworks corresponding to
knowledge-level primitives can be implemented using appropriate data structures and associated procedures
without necessarily mimicking the detailed behavior of individual nodes and links in the subnetwork.

5 SHRUTI on the CM-2

Initially we developed SHRUTI-cM2, a data parallel implementation of SHRUTI on the Connection Machine
CM-2 (TMC, 1991a). A detailed description Of SHRUTI-CM2, including design, knowledge encoding, spreading
activation and performance characteristics can be found in Appendix A. However, due to the overwhelmingly
superior performance of the SPMD implementation on the CM-5 (Section 6), the SHRUTI-cM2project was
abandoned. Figure 3 compares the performance of the CM-2 and CM-5 parallel rapid reasoning systems.

6 SHRUTJI on the CM-5

The Connection Machine model CM-5 (TMC, 1991b) is an MIMD machine consisting of anywhere from
32 to 1024 powerful processors.' Each processing node is a general-purpose computer which can execute
instructions autonomously and perform interprocessor communication. Each processor can have up to 32
megabytes of local memory 4 and optional vector processing hardware. The processors constitute the leaves
of a fat tree interconnection network, where the bandwidth increases as one approaches the root of the tree.

3 In principle, the CM-5 architecture can support up to 16K processors.
4The amount of local memory is based on 4-Mbit DRAM technology and w ill increase as DRAM densities increase.
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Figure 3: A comparison of SHRUTi-CM2 rnnning on 32K, 16K and 8K processor CM-2 machines and SHRU'rI-
CM5 running on a 32 PE CM-5. The same full-fledged, structured, random knowledge base with special
rules and a type hierarchy was used on all the machines. Note that the timing curve for the CM-5 has been
multiplied by 100. Queries used were not randomly generated.

Every CM-5 system may have one or more control processors which are similar to the processing nc tes but are
specialized to perform managerial and diagnostic functions. A low-latency control network provides tightly
coupled communications including synchronization, broadcasting, global reduction and scan operations. A
high bandwidth data netwo-k provides loosely coupled interprocessor communication. A standard network
interface connects nodes and I/o units to the control and data networks. The virtual machine emerging from
a combination of the hardware and operating system consists of a control processor acting as a partition
manager, a set of processing nodes, facilities for interprocessor communication and a UNIx-like programming
interface. A typical user task consists of a process running on the partition manager and a process running
on each of the processing nodes.

Though the basic architecture of the CM-5 supports MIMD style programming, operating system and
other software constraints restrict users to SPMD (Single Program Multiple Data) style programs (TMC,
1994). In SPMD operation, a single program runs on all the processors, each acting on its share of data
items. Both data parallel (SIMD) and message-passing programming on the CM-5 use the SPMD model.
If the user program takes a primarily global view of the system-with a global address space and a single
thread of control-and processors run in synchrony, the operation is data parallel; if the program enforces a
local, node-level view of the system and processors function asynchronously, the machine is used in a more
MIMD fashion. We shall consistently use "SPMD" to be synonymous with the latter mode of operation. In
this mode. all communication, synchronization and data layout are under the programs' explicit control.

In this section we describe the design and implementation of the SPMD asynchronous message passing
parallel rapid reasoning system-SHRUTI-CM5-that has been developed for the CM-5. 5

5 ,HRUTI-CM2. the SIMD parallel rapid reasoning system for the CM-2, can also be run on the CM-5. Results of these
experiments are described in Appendix C
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6.1 Design Considerations

Granularity of Mapping

The individual processing elements on the CM-5 are powerful processors and therefore a subnetwork in the
connectionist model can be implemented on a processor using appropriate data structures and associated
procedures without necessarily mimicking the detailed behavior of individual nodes and links in the subnet-
work. This entails that knowledge-level partitioning (Section 4) is the appropriate granularity for mapping
SHRUTI onto the CM-5.

Active Messages and Communication

SHRUTI-CM5 uses CMMD library functions (TMC, 1993) for broadcasting and synchronization, while almost
all interprocessor communication is achieved using CMAML (CM Active Message Library) routines.

CMAML provides efficient, low-latency interprocessor communication for short messages (TMC, 1993;
Eicken et al., 1992). Active messages are asynchronous (non-blocking) and have very low communication
overhead. A processor can send off an active message and continue processing without having to wait for the
message to be delivered to its destination. When the message arrives at the destination, a handler procedure
is automatically invoked to process the message. The use of active messages improves communication
performance by about an order of magnitude compared with the usual send/receive protocol. The main
restriction on such messages is their size-they can only carry 16 bytes of information. However, given
the constraints on the number of entities involved in dynamic bindings (; 10), there is an excellent match
between the size of an active message and the amount of variable binding information that needs to be
communicated between predicate instances during reasoning as indicated by SHRUTI. SHRUTI-CM5 exploits
this match to the fullest extent.

6.2 Encoding the Knowledge Base

In the SHRUTI-CM5 system, the knowledge base is encoded by presenting rules and facts expressed in a human
readable, first-order logic-like syntax specified in Appendix D. The commands recognized by SHRUTI-CM5

are described in Appendix E.

Input Processing

Knowledge encoding in SHRUTI-CM5 is a two-part process:

1. Serial preprocessing. A serial preprocessor running on a workstation processes the input knowl-
edge base and partitions it into as many chunks as there are processors on the CM-5 partition. The
preprocessor outputs a set of files which are subsequently read by the CM-5 in parallel.

2. Parallel knowledge base encoding. Each processor on the CM-5 independently and asynchronously
encodes the fragment of the knowledge structure assigned to it by the preprocessor. Depending on
the processor assignment scheme used, each processor on a n processor CM-5 would typically need to
process only 1-th of the entire input knowledge base.

This two-part, asynchronous parallel input processing is well suited for large-scale knowledge bases. In
addition, SHRUTI-CM5 also provides a direct input mode. In this mode, the processors cooperatively and
synchronously encode the knowledge base. This mode can be used to by-pass serial preprocessing and is
useful when small knowledge base fragments need to be added to an existing (large) knowledge base. SHRUTI-
cM5 also supports convenient and consistent parallel updating of large knowledge bases via incremental
preprocessing.
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typedef struct cm.predbank /* predicate bank on the CM */

/* no fields used to encode KB ./

byte collector;
byte enabler;

byte arge[DAX.ARGS]; /* arg activation phase */
char qDepth; /* depth of reasoning chain

which makes c: active ./
} ClPredBank;

typedef struct cm.pred /s predicate on the CM C/

byte noOfArgs;

struct cmalist *rules; /* list of rules with pred as conseq */

struct cmnlist *facts; /I list of facts for pred */

byte nextFree; /* index of next free bank (minst) ./
struct cm.predbank bank EK23; /* predicate banks */

struct cm-list eruleBPtr[K2J; /* rule back-pointers (for c: activation) */
CNPred;

Figure 4: Structures used to represent predicates in SHRUTI-CM5. MAX-AiGS is the maximum number of
arguments a predicate can have. K2 is the multiple instantiation constant for predicates. The top part of
the typedefs contain fields used to encode the knowledge base while the bottom part has fields used in a
given episode of reasoning.

In either of the input modes, the knowledge base is scanned by a lexical analyzer and parser. Parsing
the input results in the construction of internal data structures which represent the input presented to the
system. A specially designated server processor builds hash tables which keep track of processor assignments.
Whenever the system needs to know which processor houses some predicate P, the server broadcasts the
required information. The system is designed in such a manner that the server does not become a bottleneck
during the reasoning process. Information from the server is needed only when posing a query.6 Once a
query has been posed, the system data structures are so configured that spreading activation will proceed
without the need for any information from the server. Maintaining a server processor therefore does not
affect inference timing in any way.

Once a rule or fact (including an is-a relation) has been recognized and processed, the resulting internal
data structures will be used to encode the rule or fact on the Connection Machine processors. In the case of
a query, the data structures will be used to pose the query to the system.

Representing Knowledge Base Elements

Knowledge base elements-predicates, concepts, rules, facts and is-a relations-are assigned to a processor
where the knowledge base elements are represented using suitable structures. Any knowledge base element
is allocated space on exactly one processor. Figures 4-7 define the structures used to encode knowledge base
elements. All processors in the partition except the server can encode knowledge base elements. The SHRUTI
network is internally encoded by a series of pointers which serve to link predicate and concept representations.

6 The server is also accessed when encoding knowledge in synchronous direct input mode.
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typedef struct cmarule /* rule slot on the CM */
{

/* knowledge base encoding */

struct cmnantlist *antecedent; /* list of antecedent predicates ,/
struct cm-list *consequent; /* consequent predicate */
byte noOfAnts; /* number of ant predicates for rule */
int weight; /* weight; currently unused */
byte splCond[MAX-ARGS]; /* list of special conditions e/

int spllndex[nAXARGS];/* procs containing spl cond constants */
index splPtr[IXA-ARGS]; /* ptr to spl cond constants */

/* reasoning episode */
byte conseqCollectorEK2]; /* c: values for the conseq prod are

accumulated here; reqd for supporting

multiple antecedent rules */
char qDepthDK23; /* reasoning chain depth; reqd for multiple

antecedent rules */
} CMRule;

typedef struct camfact /* fact on the CM */

struct cm.pred *factPred; /* fact predicate C/
index constant[MAX.ARGS]; /* fact argument pointers C/
index conutLocation(MAX_ARGS]; /* proc containing const C/

bool active; /* fact active if set C/

} CMFact;

Figure 5: Structures used to encode rules and facts in SHRUTI-CM5. AZX-ARGS is the maximum number of
arguments a predicate can have. K2 is the multiple instantiation constant for predicates. Processor indices
have type index and flags have type bool. Pointers are also of type index and index into local translation
tables on the respective processors. The top part of the typedefs contain fields used to encode the knowledge
base while the bottom part has fields used in a given episode of reasoning.
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typedef struct cm.entitybank /* entity bank on the CX H/
{

/* no fields used to eucode XB */

bool buRelay; /* bottom-up relay */
bool tdRelay; /* top-down relay */
byte activation; /* entity activation phase */

} CXEntityBank;

typedef struct cuonntity /* entity on the CM */
{

struct cm-list *superConcepts; /* bottom-up links 0/
struct cm-list *subConcepts; /* top-down links */

byte nextFree; /* index of next free bank 0/
struct cmentitybank bank[KI); /* entity banks '/

} CMEntity;

Figure 6: Structures used to represent entities in the type hierarchy (in SHRUTI-CM5). Ki is the multiple
instantiation constant for concepts in the type hierarchy. Flags have type bool. The top part of the typedefs
contain fields used to encode the knowledge base while the bottom part has fields used in a given episode of

reasoning.

typedef struct ca-isalink /* is-a links on the CM 9/

index destination; /* index of destination proc 9/

index concept; /* destination concept */

/* no fields used during reasoning episode o/

} CM-isALiLk;

Figure 7: Structure used to encode is-a relationships in SHRUTI-CM5. Processor indices have type index.
Pointers are also of type index and index into local translation tables on the respective processors. The top
part of the typedef contains fields used to encode the knowledge base while the bottom part has fields used
in a given episode of reasoning.
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initialize global statistics collection variables;

while (termination condition not not) {
/* propagate activation in the type hierarchy */
spread bottom-up activation;
spread top-down activation;

/* propagate activation in the rule base s/
back-propagate collector activation;
check fact matches;
propagate rule activation;

update statistics collection variables;

Figure 8: The main propagation loop used in spreading activation during an episode of reasoning. The
termination condition is met when the query is answered or the system determines that the query has no
answer. Note that the order of the operations is crucial while propagating rule base activation. Activation
of predicates whose collectors became active in the prevIous step must be back-propagated before facts are
matched, since fact matching could activate other predicate collectors whose activation should be spread in
the nezt propagation step. Further, fact matching for predicates that became active in the previous step
must occur before new rules are fired, since firing rules could activate more predicates and fact matches for
these predicates should be checked in the next iteration.

Unlike a serial machine, a "pointer" on the CM-5 would need both a memory address and the index of the
processor to which the required fragment of memory belongs. In order to support parallel knowledge base
encoding, the "memory addresses" are indirect and index into translation tables on the respective processors.

Encoding Rules and Facts

Depending on the processor allocation scheme (Section 4), every predicate and concept appearing in the
knowledge base will be assigned to a processing node on the CM-5. Further, a rule or fact (including an
is-a relation) that is being encoded will also be assigned to a processor. The actual details of the processor
allocation are dictated by the processor assignment scheme being used. The SHRUTI-CM5 design offers several
options for processor assignment schemes. SHRUTI-CM5 implementations use random processor assignment
for predicates and concepts. Facts and is-a links are encoded on the processors containing the relevant
predicate or concept 7 and rules were encoded on the processor containing the consequent predicate. Any
processor in the machine (except the server) can have both predicates and concepts assigned to it.

Once the predicates, concepts and other knowledge base elements under consideration are assigned to
processing elements on the CM-5, the knowledge base structures are built and/or updated. Rules, facts, and
as-a links are encoded by a series of pointers which link predicate and concept representations to form the
entire network.

?Asigning facts (ias- links) to the processor housing the associated predicate (concept) could result in deteriorating per-
formance if the distribution of facts (is-a relations) is skewed-i.e., a few predicates (concepts) have a disproportionately large
number of facts (ia-& relations). Under such situations, other schemes such as splitting facts (is-& links) across processors may
have to be considered.
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6.3 Spreading Activation and Inference

Queries can be posed after the knowledge base has been encoded. Queries result in the activation of the
relevant predicate and concepts as described in (Shastri and Ajjanagadde, 1993) and (Mani and Shastri,
1993). The activation propagation loop is shown in Figure 8. SHRUT1 phases are represented as "markers"-
integers with values ranging from 1 to the maximum number of phases.

The system runs asynchronously in that each processor continues with its processing irrespective of the
progress made by other processors. If an answer to the query is found, the reasoning episode terminates
immediately. If no answer is found after a certain number of asynchronous iterations, all processors synchro-
nize and iterate synchronously. This synchronization ensures that activation has had a chance to traverse
the depth of the network and is a safeguard against unlikely, but possible, cases of pathological imbalances
in computation and interprocessor communication load. If no answer is found even after a fixed number
of synchronous propagation steps, the reasoning episode terminates without an answer. This termination
criteria is in keeping with the constraint that reflexive reasoning can only occur up to a bounded depth. The
user can experiment with the terminating criteria by setting the number of asynchronous and synchronous
iterations at compile time.

Each processing node (except the server), maintains several activation "frontiers" for both the rule base
dmd the type hierarchy. Each frontier is essentially a list of predicates or concepts that are active and which
reed to be considered in the current activation propagation step. The following frontiers are maintained:
A rule-frontier consisting of consequent predicates of rules under consideration in the current step; A fact-
frontier consisting of predicates for which fact matches need to be checked; A back-propagation-frontier for
handling back propagation of collector activation; and a type-hierarchy-frontier for activation propagation in
the type hierarchy. During each propa~gation step, all frontiers are consistently updated in preparation for the
next step in the iteration. Frontier elements are deleted after performing the required operation. A frontier
element will reappear in the frontier for the nezxt propagation step only if the operation attempted in the
current step was unsuccessful. This ensures that the same operation-like firing a specific rule, matching a
fact or firing an is-a fact-is not unnecessarily repeated. All frontiers are created and deleted asynchronously
on each processor.

During an episode of reasoning, all interprocessor communication-including firing rules, spreading ac-
tivation in the type hierarchy and back-propagating collector activation-is effected using active messages
supported by the CMAML routines. The system has been tailored so that any information that needs to be
exchanged between two processors will always fit in a single active message.

Each activation propagation step (on a given processor) results in advancing all activation frontiers by
one level. In a given propagation step, each processor scans its frontiers and takes appropriate action-
like firing rules, matching facts, etc. The active messages these processors send out will invoke handlers
when they arrive at their destination. The handler functions perform the requested action-like receiving
an instantiation, updating relevant frontiers, and so on. In the asynchronous phase, each processing node
operates independently of the others.

Type Hierarchy and Multiple Instantiation

The type hierarchy is handled in a manner that is essentially similar to the rule base. Spreading bottom-up
and top-down activation is separate and sequential. As entities go active, they broadcast their activations
to all the processors in the partition. The processors cache this information for fast, local access during fact
matching and special condition checking. In order to handle multiple instantiation (also see Appendix B),
whenever a predicate or concept receives activation, it is compared with existing activation in the banks. If the
incoming activation is not already represented, it is then deposited into the next available bank. The predicate
representing the instantiation keeps track of the source of the instantiation in order to back propagate
collector activation. An instantiation will need to be identified using (i) the processor housing the predicate or
concept; (ii) the predic.,e or concept that originated the instantiation and (iii) the bank under consideration.
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Figure 9: SHRUTI-CM5 running on a CM-5 with 32 processors. The graph shows the effect of the size of
the knowledge base on response time for queries with varying inference depths. Due to the random nature
of the knowledge base and the queries used, response times for a given depth are statistically reliable only
when a large number of data points are averaged. For the larger depths, very few data points were available
and this accounts for the seemingly better performance at larger depths. We expect the "dip" in the curve
to "straighten out" as more data points are averaged.

Enough information is maintained when an instantiation is received so that collector activation can be
propagated back to the predicate bank which originated the activation. Note that multiple instantiation is
handled without the use of switches (Mani and Shastri, 1993); the above protocol is functionally equivalent
to these switches and ensures that (i) any predicate or concept represents at most a bounded number of
instantiations (the number being decided by the multiple instantiation constants KI and K2) and (ii) a given
instantiation is represented at most once so that no two banks of a predicate or concept represent the same
instantiation.

Statistics Collection

SHRUTI-CM5 can be configured to collect statistics about various aspects of the system like knowledge
base parameters, processor communication and computation, and the reasoning process. These include the
distribution of knowledge base items among processors, the processor load and message traffic during query
answering, and a count of knowledge base items of each type (rules, facts, concepts, etc.) activated during
processing. Full-fledged data collection can slow down the system due to the extra time needed to accumulate
required data.

6.4 Characteristics of SHRUTI-CM5

SHRUTI-CM5 has been tested using knowledge bases containing up to several hundred thousand rules and
facts. Most of the experimentation has been carried out on a 32 node machine.
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Figure 10: SHRUTI-CM5 running on a CM-5 with 32 processors. The graph shows the number of rules fired
in answering queries with varying inference depths. See caption for previous figure for an explanation of the
unexpected "dip" in the curve.
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Figure 11: SHRUTI-CM5 running on a CM-5 with 32 processors. The graph shows the average time needed
to fire a rule, shown as a function of knowledge base size and query depth.
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Figure 12: SHRUTI-CM5 running on a CM-5 with 32 processors. Distribution of knowledge base elements
(rules, facts and is-a relations) on the CM-5 processors for a knowledge base with approximately 300,000
elements.
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Figure 13: SHRUTI-CM5 running on a CM-5 with 32 processors. Computational load distribution on the
CM-5 processors. The number of active predicates, entities and facts on each processor is shown. This load
distribution was obtained when answering a query of depth 8 with a knowledge base of size approximately
300,000.
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Figure 14: SHRUTI-CM5 running on a CM-5 with 32 processors. Communication load distribution on the
CM-5 processors. The number of active messages sent by each processor is shown. This load distribution
was obtained when answering a query of depth 8 with a knowledge base of size approximately 300,000.

Figures 9-14 illustrate the performance, timing and resource usage of SHRUTI-CM5. Figure 9 plots
response time for varying query depths and knowledge base sizes. Figure 10 shows the number of rules fired
when answering the respective queries. In both these figures, the queries used were generated randomly, and
the values shown are averages for a given knowledge base size and query depth. About 100 queries with
depths ranging from 0 to 8 were used; some of the queries were answered while several were not. The graphs
depict the average for queries that were answered. The number of queries contributing to each data point
ranges from about 15 (for depth 0) to 1 (for maximum depth). As the number of queries averaged over
increases, we expect the curves to get smoother and statistically more reliable.

Figure 11 shows the average time needed to fire a rule as a function of knowledge base size and query
depth. When a reasonably large number of rules fire in a given reasoning episode, the time needed per rule
firing settles to a small, relatively constant value. Due to random queries being posed to a random knowledge
base, there is lot of variation in the response time and other performance statistics for a given knowledge
base size and query depth. Among all this variation, the behavior of the "time-per-rule" metric seems to be
consistent over a variety of knowledge bases. We however do not know whether the "time-per-rule" metric
will remain constant if the knowledge bases are significantly larger than the ones we have experimented with.

Figure 12 shows the distribution of a knowledge base with approximately 300,000 elements among the
CM-5 processors. It is easily seen that the distribution is very even as a result of random processor allocation.
Finally, Figures 13 and 14 show the computation and communication load on each processor for a 300,000
element knowledge base and a query of depth 8. Computation load is measured as the number of active
predicates, entities and facts on each processor, while communication load is the number of active messages
sent out by each processor. In spite of the unpredictable nature of the activation trail in the knowledge base,
communication and computation load are relatively well balanced. Processor load is reasonably balanced
irrespective of the query.

The timing reported in the graphs is the elapsed time needed to process the queries. Random, struc-
tured knowledge bases were used in these tests (see Section 6.5). These knowledge bases exploited the full
functionality of the reasoning system and had a mix of regular rules and facts, rules with special conditions,

19



quantified facts and is-a relations. Rules with special conditions included rules with repeated variables, typed
variables, existential variables and entities; rules with multiple predicates in the antecedent and rules which
lead to multiple instantiation of predicates. In spite of the large scale of these experiments, it is evident that
SHRUTI-CM5 provides relatively good performance. Figure 3 compares the performance of SHRUTI-CM5 and
SHRUTI-CM2.

6.5 Generating Knowledge Bases

Almost all experimentation with SHRUTI-CM5 have been carried out using randomly generated structured
knowledge bases. Though the individual knowledge base elements are generated at random, these elements
are organized into domains thereby imposing structure on the knowledge base. Each domain is a cluster of
predicates along with their associated rules and facts. Domains could be of two types: target domains, which
correspond to "expert" knowledge about various real-world domains; and special domains, which represent
basic cognitive and perceptual knowledge about the world. A typical structured knowledge base would
consist of several target domains and a small number of special domains. The predicates within each (target
or special) domain, and predicates across target and special domains richly connected by rules; predicates
across different target domains are sparsely connected. The structure imposed on the knowledge base is
a gross attempt to mimic a plausible structuring of real-world knowledge bases. This is motivated by the
notion that knowledge about complex domains are learned and grounded in metaphorical mappings from
certain basic, perceptually grounded domains (Lakoff and Johnson, 1980). However, the "knowledge" in
each domain is currently being generated at random.

The knowledge base generator takes several parameters as input. These parameters decide the number
of predicates, entities, rules and facts that will be generated, the fractions of various special rules, facts and
is-a relations, the number of domains, the distribution of the knowledge base among the domains and the
fraction of inter- and intra-domain rules. The number and maximum depth of the type hierarchies generated
can also be controlled.

The parameters supplied to generate the knowledge base used for the CM-5 experiments (identified in
the graphs as kb3) is shown below:

- - Knowledge Base Parameters
lumber of rules: 150000

lumber of facts: 150000
Number of predicates: 50000
Number of concepts: 60000

Multiple antecedent rule fraction: 0.10

Multiple instantiation rule fraction: 0.10
Special rule fraction: 0.40
Fraction of is-a facts: 0.25
Fraction of facts with E vars: 0.10

- - Domain Parameters

lumber of special domains: 3
lumber of target domains: 150

Spl-Tgt knowledge base split: 0.02

Fraction of intra-special-domain rules: 1.00

Fraction of inter-special-domain rules: 0.00

Fraction of intra-target-domain rules: 0.96

Fraction of inter-target-domain rules: 0.01
lumber of type hierarchies: 10
Maximum depth of type hierarchies: 5
Fraction of shared leaves in type hiers.: 0.05
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6.6 Proposed Experiments with Real-World Knowledge Bases

Recently we have obtained WordNet (Miller et al., 1990) and plan to map it to our system. Although
WordNet does not exercise the full expressive and inferential power of our system, it is a sufficiently large
knowledge structure with numerous applications and can be used to test the effectiveness of certain aspects
of our system design, especially those having to do with message passing. We have also obtained a large
knowledge base consisting of over 14,000 frames and 170,000 attribute-value pairs about plant anatomy and
physiology from Bruce Porter of the University of Texas at Austin (Porter et al., 1988). The mapping of this
knowledge base to our system is very similar to that of WordNet. We are also trying to acquire a subset of
the CYC knowledge base (Lenat et al., 1990) in the near future.

A planned application of our knowledge base system is to couple it to the Berkeley Restaurant Project
(BeRP) speech understanding system being developed at teh International Computer Science Institute (Ju-
rafsky et al., 1994a; Jurafsky et al., 1994b). BeRP functions as a knowledge consultant whose domain is
restaurants in the city of Berkeley, California. Users ask spoken language questions of BeRP which then
queries a database of restaurants and gives advice based on cost, type of food, and location. The current
BeRP system cannot perform inferences and any possible inferences are either hard wired into the grammar
or added to the restaurant database. Our knowledge base system will allow BeRP to make inheritance-like
inferences (a Chinese restaurant is an Asian restaurant) as well as more complex inference (if the user has
a car they can get to more distant restaurants). The rapid response of our knowledge base system will be
particularly useful for an on-line speech understanding system like BeRP.

6.7 The SHRUTI-CM5 User Interface

The following example illustrates the existing user interface to SHRUTI-CM5 and supporting utilities.

1. Knowledge base generation. The user must begin with a knowledge base in a syntax recognized
by SHRUTI-CM5. Knowledge bases in other formats should be translated into a from accepted by the
system. The following is an example knowledge base in SHRUTI-CM5 syntax.

/0 Rules */
Forall xy,z C giveCx,yz) => own(y.z) ];
Fora2l xy [ ou'n(x,y) => can-ssll(x,y) ];
Forall x: Animal, y: Animal

[ preys-on(xy) => scared-of(y,x) ];
Forall xy,z Exists t

E aovs(xy,z) => prssent(x,z,t) ];
Forall x.y,z I move(x.yz) => present(xyt) ;
Forall x.y [ sibling(xy) & born-togother(x,y) => twins(xy) ];
Forall x,y [ siblingCx,y) => sibling(y,x) J;

/* Facts */
give (John.Nary,Bookl);
move (John,Iyc,Boston);
sibling (John,x);
Forall x:Cat, y:Bird [ preys-on(x.y) );
Exists x:Robin [ owu(Naxy,x) ];

/* Type hierarchy */
is-a (Bird.Animal);
is-a (Cat,Animal);
is-a (CanaryBird);
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is-a (TweetyCanary);
is-a (SylvesterCat).

It is also possible to create a (pseudo-random) knowledge base using the knowledge base generator
(Section 6.5) The output of the generator is in the above syntax.

2. Preprocessing and loading. The preprocessor reads the input knowledge base, assigns knowledge
base items to CM-5 processors (using one of several available processor assignment schemes) and writes

out a set of files. These files are read and encoded on the CM-5.

3. Parallel knowledge processing. Once the KB has been loaded on the CM-5 one can pose queries.
obtain answers, and gather performance and timing data. The follow'ng dialog illustrates how the user
interacts with the system. The system prompt is >>. User input is in typewriter font while system

output is shown in slanted font.

>> i input-kb.pp
Processing file input-kb.pp .... done

>> M -g
>> i

Enter Rules/Facts or Query:
can.. ell (Mary, Book1) ?

>> r
Simulating ... done
Query answered affirmatively in 0.001638 seconds

>> z

Resetting network ... done.
>> i query

Processing file query .... done

>> r
Simulating ... done

The input command ± is used to input the knowledge base and to pose queries. The run com-

mand r runs a reasoning episode. It reports elapsed time if the query is answered (as in the case
of canzs*11(Nary,Bookl)?). If the query is not answered, no timing is displayed (as in the case of the

query contained in the file query). Further commands can be used to view knowledge base distribution
on the processors, processor load, individual processor timing, number of rules fired, active predicates
and concepts, number of messages sent, and so on (see Appendix E).

The system also provides the capability to process command files in order to facilitate unattended

batch processing.

4. Analysis and visualization. The data obtained from reasoning episodes can be analyzed and plotted

as graphs (Figures 9-11); dynamic processor load, timing, etc. can be visualized (Figures 13 and 14);

knowledge base distribution can be analyzed and visualized (Figure 12); and the actual connectivity
of the knowledge base can be graphically displayed. All analysis and visualization are done off-line.

Integrated User Environment

In the existing SHRUTI-CM5 system, all tools and utilities are separate programs. The user must manually

invoke the required program or script in order to execute any kind of processing, analysis or visualization.
Future versions of SHRUTI-CM5 will provide an integrated graphical user environment which integrates a

suite of programs and tools:
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" Random knowledge base generators and programs for translating knowledge bases in (a limited number

of) other formats into a form accepted by SHRUTI-CM5;

"* A parser for reading knowledge expressed in a human readable, first-order-logic-like language;

"* A preprocessor for transforming knowledge bases into a form suitable for efficient loading onto the
underlying parallel machine;

" An efficient, rapid reasoning system running on the underlying parallel machine which can retrieve
answers to queries in real-time.

" Statistics collection procedures which can accumulate data regarding the knowledge base and various
aspects of parallel knowledge processing.

" A variety of tools for analyzing and visualizing the knowledge base and data produced by the statistics
modules.

The parallel rapid reasoning system would form the core of the SHRUTI-CM5 system around which all the
other programs and tools would be organized. Data processing, analysis and visualization tools would be a
combination of scripts, already existing tools and custom generated programs. Except for the parallel part,
all the other tools would be off-line, usable on a workstation and integrated into an interactive, easy-to-use
graphical interface.

The SHRUTI-CM5 system would also provide for automated remote access to the CM-5 so that all off-line
tools and processing can be confined to the local workstation. The parallel reasoning episodes will be run on
the remote CM-5 and the results and output transferred back to the local workstation for further processing.

7 Related Work

There has been considerable work in the conceptual design of massively parallel systems based on spreading
activation, marker passing, and connectionism (Lange and Dyer, 1989; Sun, 1991; Barnden and Srinivas,
1991; Waltz and Pollack, 1985; Charniak, 1983; Fahlman, 1979). However, only very few researchers have
tried to implement knowledge base systems on existing parallel platforms. A salient example of such work
is the PARKA system (Evett et al., 1993) implemented on the CM-2. PARKA encodes frame-based knowl-
edge (analogous to a semantic network) and supports efficient computation of inheritance, recognition, and
structure retrieval which is a generalization of recognition. The performance of PARKA has been tested using
pseudo-random networks (with up to 130,000 nodes) as well as subsets of CYC (Evett et al., 1993; Least
et al., 1990). The CYC subsets used had about 26,000 units. PARKA'S run time for inheritance queries is
0(d) and for recognition queries is 0(d + p) where d is the depth of the is-a hierarchy and p is the number
of property constraints. Actual run-times range from a fraction of a second (for inheritance queries) to a
little more than a second (for recognition queries with 15-20 conjuncts). PARKA does not support rule-
based reasoning; it can only handle frame-based knowledge with some extensions to deal with memory-based
reasoning.

Semantic Networks on Special Purpose Hardware

Fahlman (1979) had proposed the design of NETL, a massively parallel machine that could execute marker
passing algorithms for computing inheritance and recognition in parallel. Although this machine was never
built, it influenced the design of the CM-2 (Hillis, 1985). Researchers such as Moldavan (1993) have also
proposed and built special purpose hardware for realizing semantic networks and production systems.

The partitioning and mapping of production systems (or rule-based systems) onto multiprocessors is
considered in (Moldovan, 1989). A performance index is obtained by analyzing rule interdependencies.

23



This performance index is optimized so as to maximize inherent parallelism and minimize interprocessor
communication. Optimizing the performance index is intractable and approximations and simplifications are
necessary in order to make the problem tractable. A message-passing multiprocessor architecture (RUBIC,

for Rule-Based Inference Computer) for parallel execution of production systems is also described.

The Semantic Network Array Processor (SNAP) developed at the University of Southern California is
described in (Moldovan et al., 1992). The conceptual design of the SNAP is based on associative memory
and marker passing, and is optimized for representing and reasoning with semantic networks. The SNAP
provides a special instruction set for network creation and maintenance, marker creation and propagation,
logic operations and search/retrieval. A SNAP prototype has been built with off-the-shelf components
and used to implement a parallel, memory-based parser (Moldovan et al., 1992). The parser is capable of
processing sentences in 1-10 seconds depending on the sentence length and the size of the knowledge base
used. The largest knowledge base used consisted of about 2,000 nodes.

Unlike SHRUTi and PARKA, SNAP-based knowledge representation systems use special purpose hardware.
Further, SNAP-based systems can only deal with semantic networks and do not currently support the full
range of inferences supported by SHRUTI.

8 Conclusion

We have described an SPMD mapping of SHRUTI on the Connection Machine CM-5. We have discussed issues
involved in the design and implementation of this system-both from machine independent and machine
dependent points of view. From the test results summarized in the previous sections, it is evident that
SPMD implementations are vastly superior in comparison with the SIMD system and offer speedups of
several hundred. In view of its greatly improved performance, we plan to expend our effort in improving
and extending the asynchronous (SPMD) message passing system on the CM-5. The SPMD rapid reasoning
system on the CM-5 is also being mathematically analyzed (Mani, 1994) with the objective of obtaining
quantitative measures which can be used to further improve performance.

SHRUTI-CM5s currently supports only backward reasoning. Future work on the CM-5 will involve devel-
oping a forward reasoning system and an integration of the forward and backward reasoners.

All experiments reported here have used randomly generated knowledge bases. As noted in Section 6.6,
we plan to encode large real-world knowledge bases on the system and interface it with applications. This
will not only help us evaluate the parallel rapid reasoning systems more thoroughly, but will also result in

practical and usable systems. Depending on the kind of knowledge bases used, we also expect this endeavor
to provide insights into aspects of reflexive reasoning.
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A SHRUTI on the CM-2

The CM-2 (TMC, 1991a) is an SIMD data parallel computing machine which can be configured with up to
64K processing elements. Each processor has several kilobits of local memory and can execute arithmetic
and logical instructions, calculate memory addresses, read and store information in memory and perform
interprocessor communication. The processors are organized as an n-dimensional hypercube. The CM-2 is
controlled by a standard serial front end processor (usually a vAx or SUN machine). A sequencer decodes
commands from the front end and broadcasts them to the data processors, all of which then execute the same
instruction simultaneously and synchronously. A NEWS grid provides fast communication between adjacent
processors and a router network provides general interprocessor communication between any two processors.

The design and implementation of the SIMD parallel rapid reasoning system on the CM-2-SHRUTI-
CM2-is based on knowledge-level partitioning (Section 4) of the underlying network generated by a knowl-
edge base. We describe techniques used to encode the knowledge base and implement spreading activation
when answering queries. We then explore the characteristics of the system by running a battery of tests. All
discussion pertains only to backward reasoning.

A.1 Encoding the Knowledge Base

The knowledge base is encoded by presenting rules and facts (including is-a facts) to the SHRUTI-CM2 system.
The input syntax for rules, facts, ts-a relations and queries is specified in Appendix D. Appendix E gives a
listing of commands recognized by SHRUTI-CM2.

Input Processing

A lexical analyzer and parser read the input, parse it and build internal data structures which represent the
rules and/or facts presented to the system. All input processing is performed sequentially on the front-end.

As predicates and entities (or concepts) are recognized in the input, the parser builds hash tables which
keep track of processor assignments. The hash tables can be used to efficiently access these predicates and
entities while encoding rules and facts, posing queries and inspecting their state.

Once a rule or fact (including an is-a relation) has been recognized and processed, the resulting internal
data structures can be used to encode the rule or fact on the Connection Machine processors. In the case of
a query, the data structures will be used to pose the query to the system.

Representing Knowledge Base Elements

Knowledge base elements are represented on the processors using parallel structures. A parallel structure
allocates space for the specified structure on every processor. Figures 15 and 16 indicate the structures
used to encode predicates, rules and facts in the rule-base. The structures used to encode concepts and
is-a relationships in the type hierarchy are similar (though simpler). Note that a parallel structure will be
allocated for each knowledge base element: predicate, fact, rule, concept and is-a link. When the knowledge
base grows and more space is needed, the size of the parallel structure is doubled. The virtual processor
capability of the CM-2 ensures that each (physical) processor now houses two structures. This is transparent
to the programmer and one can still assume that each processor houses one structure, with double the number
of (virtual) processors in the machine. Using this scheme, the representation automatically scales with the
size of the knowledge base. As the number of virtual processors increases, the system will run proportionately
slower. The virtual processor mechanism therefore provides a simple, scalable and transparent way of trading
off time for space.

26



typedef struct ca-pred /* predicate on the CM C/
{

bool used; /e flag ,/
byte noOfArgs;

byte nextFree; /* index of next free bank (ninot) 5/

struct cm.predbank bank(K2]; /* predicate banks 5/

} CMPred;

typedef struct ca-predbank /* predicate bank on the CM 5/
{

/* no fields used to encode KB e/

bool cChange; /* collector value changed */
bool eChange; /I enabler value changed 5/

byte collector;
byte enabler;
byte argso[AI.• AGSJ; /* arg activation phase */
CM.PredBank;

Figure 15: Structures used to represent predicates in SHRUTI-CM2. NAX-AIGS is the maximum number of
arguments a predicate can have. K2 is the multiple instantiation constant for predicates. Flags have type
bool. The top part of the typedefs contain fields used to encode the knowledge base while the bottom part
has fields used in a given episode of reasoning.

Encoding Rules and Facts

Depending on the processor allocation scheme used (Section 4), every predicate and entity appearing in
the knowledge base will be assigned to a (virtual) processing element on the CM-2. Further, a rule or
fact (including an is-a relation) that is being encoded will also be assigned to a (virtual) processor. These
two processor allocations-one for the relevant predicates/entities and the other for the rule/fact under
consideration-may or may not be independent. The actual details of the processor allocation are dictated
by the processor assignment scheme being used.

The current and more recent versions of SHRUTI-CM2 use random processor assignment schemes for all
knowledge base elements-predicates, concepts, facts, rules and is-a links. Earlier versions used random
allocation for predicates and concepts; however, facts and is-a links were encoded on the processors contain-
ing the relevant predicate or concept and rules were encoded on the procemor containing the consequent
predicate.

Once the predicates, concepts and other knowledge base elements under consideration are assigned to
processing elements on the CM-2, all that remains to be done in order to encode the rule/fact is to correctly
fill out the various fields in the relevant structures. Encoding a fact involves the corresponding predicate and
the entities filling the arguments of the predicate. Encoding a rule (u-a relation) involves two predicates
(concepts) and a rule-slot (is-a link). If a rule has multiple predicates in the antecedent, the encoding is
slightly more complex, as pictured in Figure 17.
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typedef struct cmurule /I rule slot on theoC */
{

/* knowledge base encoding */
bool used; /* flag */
boo1 dummy; /I rule slot is dummy it flag set 0/
index antecedent; /* invalid for head rule slots C/
index consequent; /* points to head slot in a dummy 5/

byte noOflnts; /e > 1 in a head rule slot 0/
int weight;
byte antloOfArgs; /e invalid for head rule slots C/

byte argIapDIAXAARGS]; /e arg mapping; invalid on head slot C/
byte splCond[RAX.ARGS]; /* not used in dummy slots */
int spllndexDRAZ.ARGS]; /* not used in dummy slots 0/

/* reasoning episode */
byte dummyCollectortK2J; /* used only in dummy slots C/

bool fire; /* rule can fire if sot */
bool selected; /C instantiation selected if set e/
byte nextBank; /. next conseq pred bank to consider e/
byte bankSelectodC•2]; /* rule back pointer 0/
/C NOTE: bankSelected~i) == j if bank i in the ant prod has

instantiation from bank j in the conseq prod; valid only on
non-head rule slots; in a head rule slot bankSelected[i] am i/

} CRRule;

typedef struct ca-fact /* fact on the CR H/
{

bool used; /* flag 5/

index factPred; /* fact predicate index C/

byte noOfArgs;
index constant (JMU.RGS]J; /* fact arguments */

bool active; /* fact active if set 5/

} CRFact;

Figure 16: Structures used to encode rules and facts in SHRUTI-CM2. RAI-ARGS is the maximum number of
arguments a predicate can have. K2 is the multiple instantiation constant for predicates. Flags have type
bool while processor indices have type index. The top part of the typodefs contain fields used to encode
the knowledge base while the bottom part has fields used in a given episode of reasoning.
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Figure 17: Encoding single- and multiple-antecedent rules. The figure on the left indicates the encoding
of single-antecedent rules while the figure on the right depicts the encoding of multiple antecedent rules.
Every predicate and rule-slot is housed on a processor. Arrows indicate links which are implemented using
interprocessor communication.

A.2 Spreading Activation and Inference

Queries can be posed after the knowledge base has been encoded. Again, queries have a specific syntax (as
described in Appendix D) and result in activating the relevant predicate and concepts in keeping with the
description in (Shastri and Ajjanagadde, 1993) and (Mani and Shastri, 1993). The reasoning episode can
then be run, either step-wise or to completion. We now describe the mechanics of spreading activation and
matching facts in the system. The gross structure of the activation propagation loop is indicated in Figure 8.
Phases in SHRUTI are represented as "markers" -integers with values ranging from I to the maximum number
of phases.

The Rule Base

As shown in Figure 8 spreading activation in the rule base consists of three steps:

e Propagating rule activation. Spreading activation in the rule base by rule firing is achieved by executing
the following:

1. Every non-dummy rule-slot gets the instantiation in the consequent predicate bank under con-
sideration.

2. All non-dummy rule-slots check if all special conditions in the rule are satisfied.

3. If all special conditions are satisfied, the dummy rule-slots got the respective instantiations from
the corresponding head rule-slot.

4. All non-head rule-slots transform the activation and send it to the respective antecedent predi-
cates.

In the process of firing a rule, the system maintains sufficient book-keeping information to back-
propagate collector activation to the consequent of a rule.
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Once a rule fires, it will not fire again unless a new bank of the consequent predicate becomes active.
This ensures that the same rule does not repeatedly fire thereby minimizing unnecessary interprocessor
communication. Note also that the processor housing the rule-slot will need to communicate with other
processors in order to get predicate bank instantiations, get information from the head rule-slot, send
information to dummy rule-slots and send the transformed activation to the antecedent predicate.

o Checking fact matches for active predicates. All facts for predicates which have active collectors are
matched simultaneously. Processors encoding the facts communicate with the processors housing the
relevant predicates and concepts in order to check if the firing "phases" match. If a fact "fires", the
collector of the corresponding predicate is activated.

o Back-propagating collector activation. Sending collector activation to predicate banks which originated

the activation involves the following:

1. Non-head rule-slots get the state of the predicate collector.

2. Dummy rule-slots send the collector value to the head rule slot which accumulates all the incoming
values.

3. Non-dummy rule-slots send the activation to the respective consequent predicates provided the
collector activation exceeds a threshold. The threshold could depend on the number of antecedent
predicates for the rule, the level of activation of antecedent predicate(s), and/or other factors.

Rule-slots that have already propagated collector activation to the corresponding predicate bank will
not participate in this step. Again, this is done in order to minimize unnecessary interprocessor
communication.

The Type Hierarchy

Propagating activation in the type hierarchy is similar to spreading activation in the rule-base, except
that it is much simpler. Spreading bottom-up activation and top-down activation are handled separately
(and sequentially) in the type hierarchy. When spreading bottom-up (top-down) activation, all is-a links
which have an active bank in the subconcept (superconcept) "fire" and spread activation to the respective
superconcept (subconcept). The is-a link gets activation from the subconcept (superconcept) and @ends
it to the superconcept (subconcept). Again, in order to minimize communication, we ensure that any new
activation traverses corresponding is-a links exactly once.

Multiple Instantiation

Multiple instantiation in SHRUTI-cM2 is handled without the use of switches (Mani and Shastri, 1993).
Predicates and concepts can accommodate K2 and K1 instances respectively. When spreading activation in
the network, predicate and concept banks are considered one at a time. In other words, in a given clock cycle
(i.e., in one iteration of the propagation loop; see Figure 8) only one active bank of a predicate or concept
will be considered. As described in Appendix B, care is taken to avoid potential problems that could result
from this technique.

Whenever a predicate or concept receives activation, it is compared with existing activation in the banks.
If the incoming activation is not already represented, it is then deposited into the next available bank. The
rule- or link-slot that sent in the activation is notified that the instantiation it sent has been selected. In the
rule base, the rule-slot receives the bank number accommodating the new instantiation. This information
is needed when back-propagating collector activation. If the incoming activation is already represented in
the predicate or concept, or if all banks are already in use, the incoming activation is discarded. Even in
this case, rule-slots are notified so that they can proceed to the next bank of the consequent predicate. A
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Figure 18: SHRUTI-CM2 running on a CM-2 with 4K processors. The graph shows the effect of the size of the
knowledge base on response time for queries which require inference depths ranging from 0 to 10 Queries
used were not randomly generated. The knowledge base used was not structured.

rule-slot retries sending the same instantiation if it does not receive notification that the activation was either
selected or discarded.

The above protocol simulates the function of the multiple instantiation switches, and brings about efficient
dynamic allocation of predicate =.:d concept banks to ensure that:

"* Any predicate (concept) in the system represents at most K2 (KI) instantiations.

"* A given instantiation is represented at most once; in other words, no two banks represent the same
instantiation.

Statistics Collection

Apart from timing the reasoning episodes, SHRUTI-CM2 can also be configured to gather data about several
other aspects including knowledge base parameters (number of rules, facts, is-a relationships, and concepts)
and communication data (number of messages, sends and gets). Enabling full-fledged data collection can
slow down the system due to the extra time needed to accumulate the required data.

A.3 Characteristics of SHRUTI-CM2

SHRUTI-CM2 has been run on a 4K CM-2 and on a 32K CM-2. Both machines had 256 kilobits of memory
on each processor. Figures 18 and 19 summarize the results of experiments run on these machines. In these
figures, the response time shown is the actual CM time used. The timing routines available on the CM-2
also report elapsed time for the reasoning episode. Elapsed time is affected by other processes running on
the front end and is therefore unreliable. The knowledge bases used in these experiments were generated
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Figure 19: SHRUTI-cM2 running on a CM-2 with 32K processors. The graph shows the effect of the size
of the knowledge base on response time for queries which require inference depths ranging from 0 to 10.
Queries used were not randomly generated. The knowledge base used was not structured.

at random, and did not contain us-a relationships or rules with special conditions. The inference path for
a given query was tailored to ensure a reasonable branching factor-at least one of the predicates in the
activation frontier had five or more outgoing links originating from it.

Based on these and other experiments, and on the design of SHRUTI-cM2, we can summarize the charac-
teristics of the system:

" The response time is approximately linear with respect to the size of the knowledge base, for knowledge
bases with up to 160,000 elements. Thus, as the size of the knowledge base increased, query answering
time increased proportionately. This is to be expected since more predicates would be active on the
average and would entail proportionately more processing and interprocessor communication as the
size of the knowledge base increases.

Beyond a certain limit, we expect response time to increase steeply with the size ot the knowledge
base. However, effort was not expended in locating this limit or studying the characteristics of the
system near this threshold since our focus shifted to the CM-5. As a result, all timing results stated
here apply only to knowledge bases with up to 160,000 rules and facts.

" Time taken to answer a query increases as the average branching factor of the knowledge base increases.
This again is caused by increased processing and interprocessor communication.

"* Increasing inference depth needed to answer a query proportionately increases response time. Every
extra inference step requires an extra activation propagation step (i.e., an extra iteration of the loop
in Figure 8).

"* Response time is approximately inversely proportional to the number of (physical) processing elements
on the machine. This can be attributed to the increased computing power and the lower "density"
(with fewer knowledge base elements per processor) which results in enhanced parallelism.
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"* The time taken to answer a query ranges from a fraction of a second to a few tens of seconds.

"* An inherent problem with the use of parallel variables on the CM-2 is inefficient memory usage. Since
the number of virtual processors must always be a power of two, this could potentially lead to significant
waste of memory. There appears to be no simple solution to this problem without breaking out of
SIMD operation. SPMD implementations on the CM-5 avoid this problem entirely.

" The maximum size of the knowledge base that can be encoded on a machine depends on the total
amount of memory available on the machine. In addition, with increasingly large knowledge bases, the
communication bottleneck would also significantly slow down the system.

B Multiple Instantiation-Some Technical Details

Multiple instantiation in both SHRUTI-CM2 and SHRUTI-CM5 is handled without the use of switches (Mani
and Shastri, 1993). When spreading activation in the network, predicate and concept banks are considered
one at a time. In other words, in a given iteration of the activation propagation loop (see Figure 8) only one
active bank of a predicate or concept will be considered. This technique could cause indefinite waits in the
rule base. To illustrate the problem, suppose we are currently considering bank i of predicate P. Let P be
the consequent of rules r, and r2. Let R1 and R2 be rule-structures that represent r1 and r 2. At propagation
step t, suppose r, fires and r2 does not. The fact that r, fired for bank i of P will be noted in Ri, and Ri
can shift its focus to the next active bank i + 1 in the next propagation step. Since r 2 did not fire, R 2 is

stuck at bank i. R2 cannot skip bank i and go on to bank i + I since r2 could fire later due to activation
propagating in the type hierarchy. We circumvent this problem by defining special protocols.

Note that this problem does not arise in the type hierarchy since all is-a links originating at a concept
always fire-unlike a rule, no preconditions need to be satisfied for an is-a link to fire.

SHRUTI-cM2

Let Da, be the depth of the type hierarchy. Then,

"* If a rule r for bank i of some predicate fires at time step t, then update R, the structure representing r,
to consider bank i + 1 of the corresponding predicate in step t + 1 (subject to the conditions mentioned
below).

"* If a rule r for bank i of some predicate does not fire at time step t, then two cases are possible:

1. If t < Dth, then do not update R. Thus, bank i will be reconsidered in step i + 1.

2. If t > Dih, update R to consider bank i + 1 in the next time step. 9

Since activation spread in the type hierarchy will not activate any new concepts after Dth time steps, this
scheme ensures that all banks of a predicate will eventually be considered.

SHRUTI-CM5

In SHRUTI-CM5, the multiple instantiation indefinite wait problem is handled by placing special elements on
the rule-frontier. Normally, a rule-frontier element is a (consequent) predicate, along with the bank that was
instantiated. All rules for that predicate bank are considered in a given propagation step. If any rule does
not fire for this bank, then a special pair of elements is added to the rule-frontier. This pair specifies the

9 Whenever any rule-slot R is updated to consider an inactive predicate bank, R waits till an instance has been assigned to
that bank.
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Figure 20: SHRUTI-CM2 running on a CM-5 with 64 processors. The processing nodes on the CM-5 are used
in SIMD mode. The graph shows the effect of the size of the knowledge base on response time for queries
which require inference depths ranging from 0 to 10. Queries were not randomly generated. The knowledge
base used was not structured.

predicate bank and the associated rule that need to be reconsidered in the next propagation step. Whenever
such a pair is encountered on the rule-frontier, only the specified rule is processed. If subsequent banks of
the predicate become active, these predicate banks will be placed on the frontier as usual, irrespective of the
fact that previous banks could have rules which have not yet fired.

C SHRUTI-CM2 on the CM-5

In this section, we briefly evaluate SHRUTI-CM2 running on the CM-5. Since SHRUTI-CM2 is written in C*,
and a C* compiler is available for the CM-5, SHRUTI-CM2 was recompiled and run on the CM-5. SHRUTI-cM2
running on the CM-5 uses the CM-5 in data-parallel (SIMD) mode. Figure 20 summarizes the results. Com-
paring with Figures 18 and 19, we observe that the performance of SHRUTI-CM2 on the CM-5 is comparable
to that on the CM-210 , though message passing on the CM-5 appears to be more robust.

10 The rule of thumb seems to be that a 32 node CM-5 is approximately equivalent to a CM-2 with 8K processing elements.
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D Input Syntax for Rules, Facts and Queries

To illustrate the input syntax for rules, facts and is-a relations, we begin with an extension of the example
in Section 6.7.

/* RULES */
forall xy,z Egive(x,y,z) => own(y,z)];
foral. xy Ebuy(z.y) => owr(x.y)];
forall xy Cown(x,y) => can.se*l(xy)];
forall x,y [sibling(x,y) & born.together(xy) => twins(x.y)];
forall xy [preys.on(x,y) => scared.of(y,x)J;
forall xy,z Eaove(x,y,z) => prsen1t(x,z,t)];
forall x,y,z [nove(xyz) => prisent(x,yt)];
forall xy exists t

[born(x.y) => present(x,y,t)];
forall x:Animate, y:Solid-obj

[walk.into(x,y) => hurt(x)];

/* FACTS */
give (John, Mary, Booki);
give (x, Susan, Bal12);
forall x:Cat, y:Bird preys-on (xy);
exists x:Robin Cown(Maryx)];

/* IS-A FACTS */
is-a (Bird,Animal);
is-a (Cat,Animal);
is-a (Robin,Bird);
is-a (CanaryBird);
is-a (Tweety,Canary);
is-a (Sylvester°Cat).

NOTE: Any text included between 's are comments. The comments given above are enclosed between /*

... */so that they look identical to comments in C code.

The above example illustrates the input syntax accepted by the parallel rapid reasoning systems. Most
of the features are self-evident. Some points to be noted regarding the input syntax follow. Items prefixed
by a dagger (t) are supported only by SHRUTI-CM5.

"e A rule meant for the backward reasoner is said to be balanced if the following conditions are satisfied:

- Repeated variables in the antecedent are also present in the consequent.

- Typed variables, existential variables and entities present in the antecedent are also present in
the consequent.

Only balanced rules will be accepted by the system. Rules which do not satisfy the above conditions
will be rejected. A warning message to this effect will be printed.

"* Any variable (used in a rule) which is not listed iL either the list of universally quantified variables or
in the list of existentially quantified variables is assumed to be existentially quantified.

"* Any name beginning with an uppercase alphabetic character is assumed to be an entity. All names
beginning with lowercase are variable names. Names of predicates can begin with either uppercase
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or lowercase letters. Capitalization of names should be consistently used - for example, namel and
lamel would represent two different predicates; similarly, Consea and Const.A are different entities.

" A semicolon (;) indicates that a rule, fact or as-a fact has been entered; it also indicates that more
input is to follow. The occurrence of a period (.) in the input indicates the end of a rule, fact or
is-a fact and also terminates the input. A (quantified or unquantified) predicate terminated by a ? is
interpreted as a query.

" The lexical analyzer removes all whitespace; the input is therefore unaffected by the addition of extra
blanks, tabs or newlines. Further, spaces can be omitted wherever it is not essential".

" The lexical analyzer also removes all comments. Any text enclosed between /'s (/ ... /) is a com-
ment. The text of a comment can contain any character or symbol except /. A comment can start
and end at any point in the input. In particular, a comment may span several lines or may be limited
to part of a single input line.

"* tTags. Predicates and entities can be tagged (with a non-zero, positive integer) by using the < >
construct: <give (x, y. z), 3> or <Mary, 6>. Tags can be used to group "similar" predicates and entities
together.

i Error Handling. When syntax errors are detected in the input, the action taken depends on the
mode of input:

- If input is being read from the terminal (stdin), an error message is issued, and the last rule or
fact should be re-entered after typing one or more semi-colons (;).

- If input is being read from a file, the parser prints the line number containing the syntax error
and continues reading the file, so that all syntax errors in the file are listed. Rules or facts in the
input that were correctly recognized (i.e., had no syntax error) will be encoded; the others will
be ignored.

Below is the formal grammar for the input language (for rules, facts, is-a relations and queries) which
specifies the exact form of each input structure. The grammar is accurate for SHRUTI-CM5. Though most
of the constructs are identical in SHRUTI-CM2, there are some minor differences. Further, SHRUTI-CM2 does
not support tags.

input - . /* stop - no more input */
I ; input /* continue - more input /
[input-item input

input-item query /* query */
I fact /* fact /
I rule /* rule /
I tag-def /* tag definition /

rule -- q-prefix [ pred-list => predicate
I pred-list => predicate

fact - predicate
I q-pred

query -- predicate ?
I q-pred ?

tag-def < predicate , NUM >
I < constant , NUM >

q-pred q-prefix [ predicate]

"To distinguish between the variable I'ora.x' and I ors.fl x', a space is eaential. But a space is not required alter the
in 'o*w( y,)'. In general, spaces are not essential before and alter punctuation symbols.
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q-prefix - FORALL type-list

I EXISTS type-list
I FORALL type-list EXISTS type-list
I EXISTS type-list FORALL type-list

type-list - variable
I variable constant
I variable , type-list
I variable constant , type-list

pred-list -. predicate & prod-list
I predicate

predicate -- arg-or-pred ( arg-list)
I arg-or-pred ( )

arg-list --+ arg-or-pred , arg-list
I arg-or-pred

arg-or-pred - constant I variable
constant - CONST
variable -. VAR

Here, CONST represents entities (any token starting with an uppercase letter), VAR are variables (quantified
or unquantified) in the rules, facts or queries and are tokens beginning with lowercase letters. The variable
and entity tokens are represented by a sequence of alphanumeric characters along with - and .. Any integer
is recognized as a NUM. The tokens FORALL and EXISTS are recognized when the input contains these
words, spelled with any combination of uppercase and lowercase letters (i.e., arbitrarily capitalized).
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E SHRUTI-CM Commands

Commands recognized by SHRUTI-CM2 and SHRUTI-CM5 are listed below. Some of the commands and de-
scriptions are applicable only to SHRUTI-CM5 and are prefixed by a dagger (t). The SHRUTI-CM5 preprocessor
only supports the commands i, v and q. Each command is invoked by using a single character. The first
non-blank character typed at the input prompt is taken to be the command. Any non-blank text following
the first character forms the argument(s) for the command. The list below indicates the purpose of the
command, the command syntax and a brief description of the command.

Quit Syntax: q
Terminates the SHRUTI-CM program.

Help Syntax: ?
Prints out a list of available commands and the command-line options and/or arguments which the
commands accept.

Read Input Syntax: i E -f I -b I [input-file]
Reads input from the terminal (when input-file is not specified) or a file (when input-file is
specified). The -b option is used to build a backward reasoning system (default), while the -f option
builds a forward reasoning system (currently unsupported).

tIn SHRUTI-CM5 the behavior of this command is dictated by the current input mode. The system

always starts up in parallel asynchronous mode; the mode can be changed using the m command. In par-
allel asynchronous mode, each processor in the partition processes a different input file input-f ile. pid
where pid is a three digit processor index (prefixed by zeros if necessary). In global synchronous mode,
all processors cooperatively process the same input file input-file.
tSyntax: ± [-h hash-table-f ileJ C -f I -b I [input-f ileJ

The -h option for read input is supported by the SHRUTI-CM5 preprocessor and can be used to update
the internal server hash tables which store processor assignment and other details for predicates and
concepts. This feature is useful for incremental preprocessing of large knowledge bases.

tChange Input Mode Syntax: m C -p I -g I

Changes input mode to parallel asynchronous (with the -p option) or to serial, global synchronous
(with the -g option). Without any option, this command prints out the current input mode. The

current input mode dictates the behavior of the i command.
t Write Out Hash Table Syntax: v [-o output-file-prefix]

Writes out the current server hash tables to the specified file (with a .hashtables extension). If no
output file prefix is given, kb.pp is used as default. The hash tables written out can be read by the
preprocessor (using the i command with the -h option) and supports incremental preprocessing of
large knowledge bases.
tSyntax: w C -g I [-o output-file-prefixj
This command, when used on the SHRUTI-CM5 preprocessor, writes out the preprocessed knowledge
base. The output file names are suffixed with the processor number. If the output file prefix is not
specified, kb.pp is used as the default. If the -g option is absent, the inference dependency graph for
the knowledge base is also written out (with file extension . idg)

Run Reasoning Episode Syntax: r [C-fJ #stepsJ
Runs the reasoning episode after a query has been posed. It is an error to invoke this command when
a query has not been posed. Without any options or arguments, r runs the reasoning episode to
completion-till the query is answered or the reasoning episode has proceeded long enough to conclude
that there will be no answer. When #steps is specified with the -f option, the reasoning episode is
forced to run for #steps propagation steps (irrespective of whether the query has been answered or
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not). If the -f option is not specified, the reasoning episode terminates either after #steps cycles or
after the query has been answered, whichever happens first.
t Since SHRUTI-CM5 runs reasoning episodes asynchronously, this command does not support the -f
and/or *steps arguments.

Reset Network Syntax: z C -q I -v I
Resets the network and removes all activation including the query. With the -v option, a message is
printed out indicating that the network has been reset (default). The message can be suppressed by
using the -q option.

Set Phases Syntax: p C#phases]
Sets the number of phases per clock cycle to *phases. The current number of phases is printed out if
the command is invoked without an argument.

Display Syntax: d I -p I -c } name
Displays the current instantiations of the predicate (with the -p option) or concept (with the -c option)
specified by name. An error message is printed if the named predicate or concept is not present in the
system.
tSyntax: d I -p name I -c namo

SHRUTI-CM5 supports multiple -p and/or -c options.

Statistics Syntax: s C -a I -k I -q I -c I -s I
Prints out knowledge base and reasoning episode statistics. When the system is configured for detailed
statistics collection, this command will print out more information. The -a option prints out all the
accumulated data (default). The -k option prints out information about the knowledge base. All
details about the current reasoning episode are printed out by the -q option. The -c and -s options
print out cumulative data and data from the last propagation step respectively, for the current query.
tDue to the asynchronous nature of the SHRUTI-CM5 system, a global propagation step is not well

defined. Hence, SHRUTI-CM5 does not support the -c and -s options.

tDisplay Tagged Activation Syntax: a -f first-tag (-1 last-tag]

Displays the number of active predicates and entities with tag values in the specified range. If the -1
option is not specified, active predicates and entities with tag value equal to first-tag are printed.

t Display Processor Load Syntax: I E -a I -k I -q I -t I [-n processor]

Prints out the processor load for the current reasoning episode. When the system is configured for
detailed statistics collection, this command will print out more information. The -a option prints
out all information (default). The -k option prints out the distribution of the knowledge base on the
processing elements. The distribution of active elements for the current reasoning episode are printed
out by the -q option. The timing for individual processors (for the current reasoning episode) is
displayed by the -t option. If the -n option is given, required information is displayed for the specified
processor. If the -n option is not used, data is displayed for all processors in the partition.
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Abstract even though it requires multiple steps of inference using

Polynomial time complexity is the usual background knowledge such as Rolls-Royce is a car and

'threshold' for distinguishing the tractable from if x buys y then x owns y.

the intractable and it may seem reasonable to Not all reasoning is, and as complexity theory tells
adopt this notion of tractability in the context us, cannot be, reflexive. We contrast reflexive reason-
of knowledge representation and reasoning. It ing with reflective reasoning - reasoning that requires
is argued that doing so may be inappropriate in reflection, conscious deliberation, and at times, the use
istarued cotht dfmoing so m beinappopriae ind- of external props such as paper and pencil (e.g., solv-
the context of common sense reasoning under-

lying language understanding. A more strin- ing logic puzzles, doing cryptarithmetic, or planning a

gent criteria of tractability is proposed. A re- vacation)-
sult about reasoning that is tractable in this
stronger sense is outlined. Some unusual prop- 2 Reflexive reasoning necessitates a
erties of tractable reasoning emerge when the strong notion of tractability
formal specification is grounded in a neurally
plausible architecture. In order to quantify the notion of reflexive reasoning in-

troduced above, let us make a few observations about

1 Introduction such reasoning.

U Reflexive reasoning occurs with respect to a largeUnderstanding language is a complex task. It involves body, of background knowledge. A serious attempt

among other things, carrying out inferences in order to at compiling common sense knowledge suggests that

establish referential and causal coherence, generate ex- our ckgr on kno e base maygcontai

pectations, and make predictions. Nevertheless we can our as knowledge ba ay conain as

understand language at the rate of several hundred words many as 101 to 101 items [Guha and Lenat, 1990].undestad laguae a therat of eveal undrd wrds This should not be very surprising given that this

per minute [Carpenter and Just, 1977]. This rapid rate knowld ncd besides otheriting our knowh-

of language understanding suggests that we can (and knowledge includes, besides other things, our knowl-

do) perform a wide range of inferences very rapidly, au- about ourselves, our family, friends, colleagues, his-

tomatically and without conscious effort - as though tory and geography; our knowledge of artifacts,

they are a reflex response of our cognitive apparatus. In sort artemusic; ome b ncles of science

view of this such reasoning may be described as reflexive sports, art, music; some basic principles of science
[Shastri, 1991]. and mathematics; and our models of social, civic,

(Shasri, 191].and political interactions.
As an example of reflexive reasoning consider the sen-

tence 'John seems to have suicidal tendencies, he has Items in the background knowledge base are fairly
joined the Columbian drug enforcement agency.' We stable and persist for a long-time once they are
can understand this sentence spontaneously and without acquired. Hence this knowledge is best described
any deliberate effort even though, doing so involves the as long-term knowledge and we will refer to this
use of background knowledge and reasoning. Informally, body of knowledge as the long-term knowledge base
this reasoning may be as follows: joining the Columbian (LTKB).
drug enforcement agency has dangerous consequences, e Episodes of reflexive reasoning are triggered by
and as John may be aware of this, his decision to join 'small' inputs. In the context of language under-
the agency suggests that he has suicidal tendencies. As standing, an input (typically) corresponds to a sen-
another example of reflexive reasoning consider the in- tence that would map into a small number of as-
ference 'John owns a car' upon hearing 'John bought sertions. For example, the input 'John bought a
a Rolls-Royce'. We can make this inference effortlessly Rolls Royce' maps into just one assertion (or a few,

"*This work was supported by NSF grants IRI 88-05465 depending on the underlying representation). The
and the ARO grant DAAL 03-89-C-0031. critical observation is that the size of the input, I1n1,



Uis insignificant compared to the size of the long-term cerned, the appropriate notion of tractability is one
knowledge base ILTKBI.1 2 where

* The vast difference in the magnitude of ILTKBI e the reasoning time is independent of ILTKBI and is
(about 108) and lIni (a few) becomes crucial when only dependent on 1lni and the depth of the deriva-
analyzing the tractability of common sense reason- tion tree associated with the inference, and
ing. Given the actual values of jInj that occur dur- e the associated space requirement, i.e., the space
ing common sense reasoning, there is a distinct pos- required to encode the LTKB plus the space re-
sibility that the overall cost of a derivation may be quired to hold the working memory during reason-
dominated by the "fixed" contribution of ILTKBI. ing should be no worse than linear in ILTKBI.
Thus we cannot ignore the cost attributable to In spite of the apparent significance of reflexive rea-
ILTKBI and we must analyze the complezity of rea- soning there have been very few attempts at develop-
soning in terms of ILTKBI as well as lIni. ing a computational account of such inference. Some

In view of the magnitude of ILTKBI, even a cursory past exceptions being Fahlman's work on NETL [19791
analysis suggests that any inference procedure whose and Shastri's work on a connectionist semantic mem-
time complexity is quadratic or worse in ILTKBI cannot ory [1988]. However these models dealt primarily with
provide a plausible computational account of reflexive inheritance and classification within an IS-A hierarchy.
reasoning. However, a process that is polynomial in jIni H611dobler [1990] and Ullman and van Gelder [19881 have
remains viable, proposed parallel systems for performing quite complex

logical inferences, however, both these systems have un-
2.1 Time complexity of reflexive reasoning realistic space requirements. The number of nodes in
Observe that although the size of a person's ILTKBI H611dobler's system is quadratic in the the size of the
Obcreaser thnsiratlthough the sizeyf age pvern's to tknowledge base (KB) the number of processors required
increases considerably from, say, age seven to thirty, by Ullman and van Gelder is even higher. Ullman and
the time taken by a person to understand natural lan- van Gelder treat the number of nodes required to encode

guage does not. This suggests that the time taken by the background KB as a fixed cost, and hence, do not re-

an episode of reflexive reasoning does not depend on the fer to its size in computing the space complexity of their
citeria nviwof t hactabilisy ir r xie proedatong as o hreai system. If the size of such a KB is taken into account,
criteria of tractability for reflexive reasoning is one where the number of processors required by their system turns
the time taken by an episode of reflexive reasoning is in- out to be a high degree polynomial.
dependent of ILTKBI and only depends on the depth of A significant amount of work has been done by re-
the derivation tree associated with the inference. 3  searchers in knowledge representation and reasoning to

identify classes of limited inference that can be per-
2.2 Space complexity of reflexive reasoning formed efficiently (e.g., see [Frisch and Allen, 19821;
The expected size of the LTKB also rules out any corn- [Brachman and Levesque, 1984]; [Patel-Schneider, 1985];
putational scheme whose space requirement is quadratic [Dowling and Gallier, 1984]; [Levesque, 19881; [Selman
(or higher) in the size of the KB. For example, the brain and Levesque, 1989]; [McAllester, 1990]; [Bylander et
has only about 1012 cells most of which are involved al., 1991]; [Kautz and Selman, 1991]). This work has
in processing of sensorimotor information. Hence even covered a wide band of the complexity spectrum but
a linear space requirement is fairly generous and leaves none that meets the strong tractability requirement dis-
room only for a modest 'constant of proportionality'. In cussed above. Most results stipulate polynomial time
view of this, it is proposed that the admissible space re- complexity, restrict inference in implausible ways (e.g.,
quirement of a model of reflexive reasoning be no more by excluding chaining of rules), and/or deal with limited
than linear in ILTKBI. expressiveness (e.g., deal only with propositions).

To summarize, it is proposed that as far as (reflex-
ive) reasoning underlying language understanding is con- 3 A tractable reasoning class

input m however, l Below we describe a class of reasoning that is tractableIAsmajlinu may, hoeelead to a potentiall large with reference to the criteria stated above. The charac-
number of elaborate inferences. For example, the input 'John
bought a Rolls-Royce' may generate a number of reflexive terization of such a class is different (but analogous) for
inferences such as 'John bought a car', 'John owns a car', forward and backward reasoning. In this paper we will
'John has a driver's license', 'John is perhaps a wealthy man', focus on backward reasoning.
etc. Some definitions:

'Some of these inferences may be 'soft' inferences, but the
issue of deductive versus evidential nature of inferences is Let us define rules to be first-order sentences of the form:
irrelevant to our current concerns.

3The restriction that the reasoning time be independent , ... )A P2(...)... A Pn(...) ::. Bzj, ...z (
of ILTKBI may seem overly strong and one might argue that where the arguments of Pi's are elements of {xi ...zml,
perhaps logarithmic time may be acceptable. Our belief that and an argument of Q is either an element of {jx, ...xm},
the stronger notion of effectiveness is relevant, however, is an element of {zj,...zi}, or a constant. 0
borne out by results which demonstrate that there does ex-
ists a class of reasoning that can be performed in time inde- Any variable that occurs in multiple argument positions
pendent of ILTKBI. in the antecedent of a rule is a pivotal variable. 0



Note that the notion of a pivotal variable is local to a An answer to a wh-query can also be computed in time
rule. proportional to VIInld, except that lIni now equals the

A rule is balanced if all pivotal variables occurring in the arity of the query predicate Q.

rule also appear in its consequent. 0 The space requirement is linear in ILTKBI and poly-
For example, the rule Vz, y, z P(z, y) A R(z, z) =. nomial in lIni. This includes the cost of encoding the

S(y, z) is not balanced because the pivotal variable z LTKB as well as the cost of maintaining the dynamic
does not occur in the consequent. On the other hand, state of the 'working memory' during reasoning.
the rule Vx, y, z P(z, y) A R(x, z) =: S(z, z) is balanced
because the pivotal variable z does occur in the conse- An informal explanation of the result
quent. The fact that y does not appear in the conse-
quent is immaterial because y occurs only once in the The number of times a predicate P may get instantiated
antecedent and hence, is not a pivotal variable, in a threaded derivation of a query cannot exceed JInJ".

Facts are partial or complete instantiations of predicates. This follows from the observation that P has at most V
Thusfacts are atomic foromulaetenstantatn of t o rmate, arguments and each of these can get bound to at most
Thus facts are atomic formulae of the form P(t1, t2...Itk) Ini distinct constants. Since each predicate instantia-
where ti's are either constants or distinct existentially tion can contain at most V bindings, the propagation
quantified variables. 03 of argument bindings from one predicate to another can

Queries have the same form as facts. Let us distinguish be carried out in time proportional to VJInlV. This as-
between yes-no queries and wh-queries. A query, all of sumes that the correspondence (specified by the rules in
whose arguments are bound to constants corresponds to the LTKB) between the arguments of the antecedent and
the yes-no query: 'Does the query follow from the rules consequent predicates are hard-wired.
and facts encoded in the long-term memory of the sys- It can be shown that the propagation of argument
tem?' A query with existentially quantified variables, bindings from multiple predicates to a predicate can be
however, has several interpretations. For example, the carried out in parallel (see [Mani and Shastri, 1992] for a
query P(a, x), where a is a constant and x is an existen- possible implementation of such a parallel binding prop-
tially quantified argument, may be viewed as the yes-no agation scheme). This means that the time required to
query: 'Does P(a, x) follow from the rules and facts for carry out one step of a parallel breadth-first derivation
some value of x?' Alternately this query may be viewed is only proportional to VIInl. It follows that the time
as the wh-query: 'For what values of x does P(a, x) fol- required to carry out a d step parallel derivation is pro-
low from the rules and facts in the system's long-term portional to ViInivd.
memory?' 0

Consider a query Q and a LTKB consisting of facts and Lower bound nature of above result
balanced rules. A derivation of Q obtained by back-
ward chaining is threaded if all pivotal variables occur- In general, derivations that involve unbalanced rules
ring in the derivation get bound and their bindings can or those that do not satisfy the threaded property can-
be traced back to the bindings introduced in Q. [] not be computed in time independent of ILTKBI, if

the available space is no more than linear in ILTKBI
Given a LTKB consisting of facts and balanced rules, a [Dietz etal., 1993]. This result follows from the obser-
reflexive query is one for which there exists a threaded vations that i) the common-element problem, i.e., the
proof. [] problem of determining whether two sets share a com-

3.1 A class of tractable reasoning mon element, can be reduced to the problem of com-
puting a derivation involving unbalanced rules and/or

The worst-case time for answering a reflexive yes-no non-threaded derivations, ii) the sorting problem can be
query, Q, is proportional to VIInJVd, where: reduced to the common-element problem, and iii) the

* lIni is the number of distinct constants in Q. lower bound on the sorting problem is nlogn (where n
would corresponds to ILTKBI). Thus derivations in-

* V is as follows: Let V, be the arity of the predicate volving unbalanced rules and non-threaded derivations
Pi. Then V equals max(Vi), i ranging over all the may not be computed in time independent of ILTKBI
predicates in the LTKB. unless one makes use of more than linear space.

* d equals the depth of the shallowest derivation of Q
given the LTKB.

Observe that the worst-case time is i) independent of 3.2 Worst-case versus expected case
ILTKBI, ii) polynomial in lIni and iii) only proportional
to d. The above result offers a worst-case characterization

As observed in Section 2, while ILTKBI may be as which assumes that during the derivation, all variables
much as 10s, JIn[ is simply the number of (distinct) 'en- will get instantiated with all possible bindings involving
tities' referred to in the input. In the context of natural constants in Q. This will not be the case in a typical
language understanding, lIni would be quite small (typ- situation. In fact it may be conjectured that in a typical
ically, less than 5). We also expect V, the maximum episode of reasoning, the actual time will seldom exceed
arity of predicates in the LTKB to be quite small. 50d (see next section).



4 A neurally motivated model of plausible upper bound on the number of distinct enti-
tractable reasoning ties that can occur in the reasoning process is about

10. Of course, these entities may occur in multiple
We have proposed a neurally plausible model (SHRUTI) facts and participate in a number of inferences.
that can encode a LTKB of the type described above, It may be significant that the bound on the num-
together with a term hierarchy and perform a class of ber of entities that may be referenced by the ac-
forward as well as backward reasoning with extreme ef- tive facts during a derivation relates well to 7 ± 2,
ficiency [Shastri and Ajjanagadde, 1990]; [Aijanagadde the robust measure of short-term memory capacity
and Shastri, 1991]; [Mani and Shastri, 1991]; [Mani and [Miller, 1956]. Note however, that SHRUTI does
Shastri, 1992]; [Shastri, 1992]. SHRUTI can draw in- not place a small limit on the number of facts that
ferences in time that is only proportional to the depth can be simultaneously active - indeed a very large
of the shallowest derivation leading to the conclusion, number of facts can be involved in each derivation
A SHRUTI like model has also been used by Hender- carried out by SHRUTI.
son [1992] to design a parser for English. The parser's
speed is independent of the size of the lexicon and the 2. During the processing of the query, each predicate
grammar, and it offers a natural explanation for a va- may only be instantiated at most k2 times.
riety of data on long distance dependencies and center Note that this restriction only applies to run-time
embedding. or 'dynamic' instantiations of predicates and not to

If we set aside SHRUTI's ability to perform termino- 'long-term' facts stored in the system. As argued in
logical reasoning, the class of reasoning that SHRUTI [Shastri, 1992] a plausible values of k2 is somewhere
can perform efficiently is a subclass of the class of rea- between 3-5. Also, k2 need not be the same for
soning specified in the previous section. The additional all predicates. The application of a SHRUTI-like
restrictions placed on SHRUTI's reasoning ability are model to parsing by Henderson also suggests that
motivated by gross constraints on the speed at which a value of k2 under 3 may be sufficient for parsing
humans can perform reflexive reasoning and gross neu- English sentences.
rophysiological parameters such as:

1. 7rr.a_, the maximum period at which nodes can be Some typical retrieval and inference timings
expected to sustain synchronous activity, If we set system parameters of SItRUTI to some neurally

2. w, the tolerance or the minimum lead/lag that must motivated values, SHRUTI demonstrates that a system
be allowed between the spiking of two nodes that are made up of simple and slow neuron-like elements can
firing in synchrony, perform a wide range of inferences (both forward, back-

3. the time it takes a cluster of synchronous nodes to ward and those involving a type hierarchy) within a few
drive a connected cluster of nodes to fire in syn- hundred milliseconds.
chrony. If we choose the period of oscillation of nodes to

be 20 milliseconds, assume that nodes can synchronize
The details of the model are beyond the scope of this within two periods of oscillations and pick k2 equal to 3,

paper and the reader is referred to [Shastri and Ajiana- SHRUTI takes 320 milliseconds to infer 'John is jealous
gadde, 19901. Let us however, state the additional con- of Tom' after being given the dynamic facts 'John loves
straints on the class of reasoning SHRUTI can perform. Susan' and 'Susan loves Tom' (this involves the rule 'if x

4.1 Additional constraints on the reasoning loves y and y loves z then x is jealous of z). The system
performed by SHRUTI takes 260 milliseconds to infer 'John is a sibling of Jack'

SHRUTI can encode a LTKB of facts and balanced rules given 'Jack is a sibling of John' (this involves the rule 'if
and answer yes to any reflexive yes-no query in time z is a sibling of y then y is a sibling of x). Similarly, the
andportionanwr to any repthofleie s wes-o qeryinatime system takes 320 milliseconds to infer 'Susan owns a car'
proportional to the depth of the shallowest derivation after its internal state is initialized to represent 'Susan
leading to a derivation of the query provided: bought a Rolls-Royce' (using the rule 'if x buys y then x

1. The number of distinct constants specified in the owns y' and the IS-A relation, 'Rolls-Royce is a car').
query does not exceed k1 , where k, is bounded by If SHRUTI's long-term memory contains the fact
7rmoz/w) (biological data suggests that k, is small, 'John bought a Rolls-Royce', SHRUTI takes 140 mil-
perhaps between 5 and 10). liseconds, 420 milliseconds, and 740 milliseconds, respec-
The mode! suggests that as long as the number of tively, to answer 'yes' to the queries 'Did John buy a
entities introduced by the query is 5 or less, there Rolls-Royce', 'Does John own a car?' and 'Can John
will essentially be no cross-talk among the facts in- sell a car?' (the last query also makes use of the rule 'if
ferred during reasoning. If more than 5 entities oc- x owns y then x can sell y). Note that the second and
cur, the window of synchrony would have to shrink third queries also involve inferences using rules as well
appropriately in order to accommodate all the enti- as IS-A relations.
ties. As this window shrinks, the possibility of cross- The above times are independent of ILTKBI and do
talk between bindings would increase until eventu- not increase when additional rules, facts, and IS-A re-
ally, the cross-talk would become excessive and dis- lationships are added. If anything, these times may de-
rupt the system's ability to perform systematic rea- crease if a new rule is added that leads to a shorter in-
soning. The biological data suggests that a neurally ference path.



5 Conclusion [H611dobler, 1990] S. H6oldobler. CHCL: A Connection-
ist Inference System for Horn Logic based on the Con-

We have proposed a criteria for tractable reasoning that nection Method and Using Limited Resources. TR-90-
is appropriate in the context of common sense reasoning 04*, International Computer Science Institute, Berke-
underlying language understanding. We have suggested ley, CA.
that an appropriate measure of tractability for such rea-
soning is one where the time complexity is independent [Kautz and Selman, 1991] H.A. Kautz and B. Selman.

of, and the space complexity is no more than linear in, Hard problems for Simple Default Logics. Artificial

the size of the long-term knowledge base. We have also Intelligence, 47(1-3), 243-279.

identified a class of reasoning that is tractable in this [Levesque, 1988] H.J. Levesque. Logic and the complex-
sense. This characterization of tractability can be fur- ity of reasoning. Journal of Philosophical Logic, 17,
ther refined by cognitive and biological considerations. pp 335-389.
This work suggests that the expressiveness and the infer- [Mani and Shastri, 1992] D.R. Mani and L. Shastri. A
ential ability of a representation and reasoning systems
may be limited in unusual ways to arrive at extremely ef- connectionist solution to the multiple instantiationficient yet fairly powerful knowledge representation and problem using temporal synchrony. In Proceedings
riienng systfa wem l kof the Fourteenth Conference of the Cognitive Science
reasoning systems. Society. Lawrence Erlbaum.
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1. INTRODUCTION

Artificial intelligence (Al) and cognitive science have made considerable advances over the

past four decades, but it is widely believed that solutions resulting from the "classical"

approach to these disciplines lack scalability, gradedness, robustness, and adaptability. Con-

sider scalability. Although existing Al systems may perform credibly within restricted do-

mains they do not scale up: as the domain grows larger a system's performance degrades

drastically and it can no longer solve interesting problems in acceptable time-scales. Consider

gradedness. Research in Al and cognitive science has made it apparent that the solution of a

cognitive task emerges as a result of rich context-sensitive interactions among a large number

of graded factors. Classical models, rooted in the von Neumann architecture, are not suited

for a'ticulating this view of computation (for a discussion of robustness and adaptability see

SYMBOLS IN NEURAL REPRESENTATIONS).

Research in connectionism is motivated by the belief that in order to address the limita-

tions mentioned above, one must pay attention to the computational characteristics of the

brain. After all, the brain is the only existing physical system that exhibits the requisite

attributes, and it seems reasonable to expect that identifying neurally motivated constraints

- albeit. at an abstract computational level - and incorporating them into our models

would lead to novel and critical insights.

In addition to recognizing the importance of neurally motivated constraints, the struc-

tured connectionist approach (Feldman et al., 1988) also recognizes that a number of insights

acquired by disciplines such as computer science, Al, psychology, linguistics and learning

theory will have to be leveraged in developing solutions to difficult problems in Al and cog-

nitive science. These insights pertain to recognizing the power of problem decomposition,

hierarchical processing, and structured representations: the need for representational and

inferential adequacy; and the role of complexity analysis.

A key difference between the structured connectionist approaches and the so called dis-
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tributed approach is as follows: The fully distributed approach assumes that each "item" (a

concept or mental object) is represented as a pattern of activity distributed over a common

pool of nodes (van Gelder, 1992). This notion of representation suffers from several funda-

mental limitations. Consider the representation of 'John and Mary'. If 'John' and 'Mary'

are represented as patterns of activity over the entire network such that each node in the

network has a specific value in the patterns for 'John' and 'Mary', respectively, then how can

the network represent 'John' and 'Mary' at the same time? The situation gets even more

complex if the system has to represent relations such as 'John loves Mary', or 'John loves

Mary but Tom loves Susan'. In contrast to the distributed approach, the structured approach

holds that small clusters of nodes can have distinct representational status (for simplicity,

structured connectionist models often equate a small cluster of nodes with a single idealized

node). In particular, there exist small clusters of nodes that act as 'focal' nodes or 'handles'

of learned concepts and provide access to more elaborate node structures which make up the

detailed encoding of concepts. Such a detailed encoding might include various features of

the concept as well as its relationship to other concepts (see (Feldman, 1989) and the article

by Shastri in (Barnden and Pollack, 1991)). The fully distributed view is also inconsistent

with the continually emerging data about the localization of function in the brain.

The structured approach is often wrongly equated with the so called "grandmother cell"

approach which assumes that each concept is represented by a distinct node. This mis-

understanding stems from an incorrect interpretation of the representational role of 'focal'

nodes.

A second difference between the structured and the fully distributed approaches concerns

learning. The latter underplays the importance of structure and assumes that essentialy all

the required structure emerges as a result of general-purpose learning processes operating on

relatively unstructured hidden layers. The structured approach holds that such a tabula-rasa

view is untenable on grounds of computational complexity; training unstructured networks
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using general purpose learning techniques is not a feasible methodology for obtaining scalable

solutions to complex problems. The structured approach emphasizes the importance of prior

structure for effective learning and requires that the initial design of network models - for

example, the broad representational significance of nodes, the number of representational

levels in the network, and the network interconnection pattern - reflect the structure of the

problem.

2. SOME NEURAL CONSTRAINTS ON COGNITIVE MODELS

2.1. Representational constraints

With over 1011 computing elements and 1015 interconnections, the human brain's capacity

for encoding, communicating, and processing information seems awesome. But if the brain

is extremely powerful it is also extremely limited: First, neurons are slow computing devices.

Second, although the spatio-temporal integration of inputs performed by neurons is quite

complex, it is relatively undifferentiated with reference to the needs of symbolic computation.

Third, neurons communicate via relatively simple 'messages' that can encode only a few bits

of information. Hence a neuron's output cannot be expected to encode names, pointers, or

complex structures.

A specific limitation of neurally plausible systems is that they have difficulty representing

composite structures in a dynamic fashion (also see COMPOSITIONALITY IN NEURAL SYS-

TEMS). Consider the representation of the fact give(John, Mary, Bookl). This fact cannot be

represented dynamically by simply activating the roles giver, recipient, and give-object. and

the constituents 'John', 'Mary', and 'Bookl'. Such a representation would be indistinguish-

able from the representation of give(Mary, John, Book1). The problem is that representing

a fact requires representing the appropriate bindings between roles and their fillers. It is

easy to represent static (long-term) bindings using dedicated nodes and links. For example,

one could posit a separate 'binder' node for each role-filler pair to represent role-filler bind-

ings. Such a scheme is adequate for representing long-term knowledge because the required
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binder nodes may be recruited over time. This scheme however, is implausible for represent-

ing dynamic bindings arising during language understanding and visual processing since it

is unlikely that there exist mechanisms for establishing new links within such time scales.

The alternative that interconnections between all possible pairs of roles and fillers already

exist and the appropriate ones become "active" temporarily to represent dynamic bindings

is also ruled out given the prohibitively large number of such role-filler bindings. Techniques

for representing bindings based on the von Neumann architecture cannot be used since the

storage and processing capacity of nodes and the resolution of their outputs is insufficient

to store and communicate names or pointers.

2.2. Scalability in time

We can visually recognize items from a potential pool of 100,000 commonplace items in about

a hundred milliseconds and can understand language at the rate of several words per second,

even though doing so involves perceptual processing, lexical access, parsing, and reasoning.

This indicates that we can perform a wide range of visual, linguistic, and inferential tasks

within a few hundred milliseconds. This observation provides a powerful constraint that can

inform our search for cognitive models (Feldman and Ballard, 1982).

2.3. Scalability in space

Although the number of neurons in the brain is quite large, it is not too large compared to

the 'size' of the problems it must solve! Consider vision and reasoning. The retinal output

consists of a million signals and similarly, our common sense knowledge base may contain

more than a million items. This suggests that any model of vision or reasoning whose node

requirement grows quadratically or higher with respect to the size of the problem, may not

be neurally plausible.
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2.4. From constraints to predictions

While cognitive agents solve a wide range of tasks with extreme efficiency their cognitive

ability is also limited in a number of ways - examples abound in vision, language, and

short-term memory. It is expected that structured connectionist models that incorporate

representational and scalability constraints discussed above would help in understanding

and explaining not only the strengths of human cognition but also some of its limitations.

3. SOME STRUCTURED CONNECTIONIST MODELS

3.1. Early work

One of the earliest examples of a structured connectionist model was the interactive activa-

tion model for letter perception by McClelland and Rumelhart (1981). The model consisted

of three layers of nodes corresponding to visual letter features. letters, and words. Nodes

representing mutually exclusive hypotheses within the letter and word layers inhibited each

other. For example, since only one letter may exist in a given letter position, all nodes rep-

resenting letters in the same position inhibited each other. A node in the feature layer was

connected via excitatory connections to nodes in the letter layer representing letters that

contained that feature. Similarly, a node in the letter layer was connected via excitatory

connections to nodes in the word layer representing words that contained that letter in thb!

appropriate position. Additionally, there were reciprocal connections from the word layer

to the letter layer. The interconnection pattern allowed bottom-up perceptual processing to

be guided by top-down expectations. The model could explain a number of psychological

findings about the preference of words and pronounceable non-words over other non-words

and isolated letters.

Other examples of early structured connectionist models were word sense disambigua-

tion models developed by Cottrell and Small (1983) and Waltz and Pollack (1985). Most

words have multiple senses but we are able to exploit contextual and syntactic informa-
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tion to rapidly disambiguate the meanings of words. These models demonstrated how such

disambiguation might occur. Cottrell and Small's model consisted of a three-level network

consisting of the lexical (word) level, the word-sense level, and the case-level. There were

inhibitory links between different noun senses of the same word, and between different pred-

icate senses of the same word. A node at the lexical level was connected to all its senses at

the word-sense level. Connections between the word-sense level and the case-level expressed

all feasible bindings between predicates and objects. As a sentence was input by activating

the appropriate lexical items in a sequence, activation flowed through the network and the

combination of lexical items, word senses and case assignment that best fit the input formed

a stable coalition of active nodes.

Another examp, ,f a structured connectionist model was the connectionist semantic net-

work model, CSN Th•astri, 1988). CSN viewed memory as a collection of concepts organized

in a IS-A hierarchy (e.g., "Bird IS-A Animal') and allowed the attachment of property val-

ues to concepts. Unlike a traditional semantic network. a property-value attachment in CSN

consisted of distributional information indicating how members of a concept were distributed

with respect to the different values of the property. csN could answer (i) inheritance queries.

i.e.. infer the most likely value of a specified property for a given concept and (ii) recognition

queries, i.e., given a description consisting of property-value pairs, find the concept that best

matched the given description. CSN found answers to queries by combining information en-

coded in the network in accordance with an evidential formalization based on the principle of

maximum entropy. In particular, CSN could use distributional information to deal with with

exceptional and conflicting information in a principled manner and disambiguate 'multiple

inheritance' situations that could not be dealt with by extant formulations of inheritance in

AL.

CSN encoded concepts, properties and values using 'focal' nodes. The IS-A relations were

encoded as links, and property values were attached to concepts by connecting the appro-
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priate property, value and concept nodes via binder nodes. The weights on links between

concept, value, and binder nodes captured the distributional information associated with a

property value attachment. A query was posed by activating appropriate nodes. Thereafter,

CSN performed the required inferences automatically by propagating graded activations and

combining activations using appropriate activation combination rules.

3.2. Recent models of memory and reasoning

The models above made significant contributions but were limited in their expressive power

and inferential ability. One of their key limitations was that they did not address the

dynamic binding problem. For example, the McClelland and Rumelhart model required

n-fold repetition of letter and feature layers to deal with words of length n; it could not

dynamically bind a letter to a position in a word. The Cottrell and Small and Waltz and

Pollack systems pre-wired all possible bindings using dedicated nodes and links. Recently

there has been significant progress in solving this problem. These include the CONPOSIT

system (see article by Barnden and Srinivas in (Barnden and Pollack, 1991)) the ROBIN

system (Lange and Dyer. 1989), the SHRUTI system (Shastri and Ajjanagadde. 1993), and

the CONSYDERR system (Sun, 1992). We give a brief overview of SHRUTI which shares a

number of representational and functional features with ROBIN but differs from it in the

mechanism used for representing dynamic bindings.

SHRUTI can encode a large number of specific facts, general rules, as well as IS-A relations

between concepts and perform a broad class of reasoning with extreme efficiency. SHRUTI

encodes an n-ary predicate as a cluster of nodes which includes n role nodes (refer to Figure

1). Nodes such as John and Mary correspond to focal nodes of the complete representations

of the individuals 'John' and 'Mary'. A rule is encoded by linking the roles of the antecedent

and consequent predicates in accordance with the correspondence between roles specified in

the rule. SHRUTI represents dynamic bindings using synchronous firing of the appropriate

argument and concept nodes. For example, the dynamic fact give(John, Mary, Bookl) is
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Figure 1: Encoding of predicates, concepts and the rules Vx,y,z [ give(x.y,z) = own(y.z) ],

Vx,y [ buy(x,y) => own(z,y) ], and Vx,y [ own(x,y) => can-sell(z,y) ].

represented by a rhythmic pattern of activity wherein the focal nodes John, Mary. and

Bookl are firing in synchrony with the role nodes giver, recip, and g-obj respectively By

virtue of the interconnections between role nodes of the predicates give. own, and can-sell,

this state of activation evolves so that (i) owner, and in turn, p-seller start firing in synchrony

with recip and hence. Mary and (ii) o-obj and, in turn, cs-obj starts firing in synchrony with

g-obj and hence. Bookl. The resulting firing pattern corresponds to the dynamic facts

give (John, Mary, Bookl), own(Mary, Bookl), and can-sell(Mary, Book 1). The key assumption

here is that if nodes A and B are linked, the firing of A leads to a synchronous firing of B. For

more on the role of synchrony and the dynamic binding problem see COMPOSITIONALITY IN

NEURAL SYSTEMS.

SHRUTI can encode long-term facts and a bounded number of instantiations of each pred-

icate and concept. The latter allows it to deal with reasoning involving -bounded recursion'.

SHRUTI can also represent a type (IS-A) hierarchy and allows categories as well as instances

in rules, facts, and queries. By using appropriate weights on links, the system can also encode

soft/evidential rules. The time SHRUTI takes to generate a chain of inference is independent
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of the total number of rules and facts and is equal to 1 * a, where I is the number of steps

in the chain of inference and a is the time required for connected nodes to synchronize. If

we assume a to be about 100 milliseconds, SHRUTI demonstrates that a system of simple

computing elements can encode millions of items and draw interesting inferences in a few

hundred milliseconds. An implementation of the system on a CM-5 encodes over 300,000

items and responds to queries with derivation lengths of up to 8 in under a second.

Instead of using synchronous firing of nodes to represent and propagate bindings, ROBIN

and CONSYDERR assign a distinct "signature" to each concept and propagate these codes to

establish bindings. A signature may take the form of a unique activation value or a pattern

of activity. CONPOSIT creates bindings by virtue of the relative position of active nodes and

the similarity of patterns. The use of temporal synchrony in SHRUTI leads to a number of

predictions about the capacity of the working memory underlying rapid reasoning (WMRR).

Thus SHRUTI predicts that a very large number of facts may be co-active in WMRR and a

large number of rules may fire simultaneously as long as: the maximum number of distinct

entities that can occur as role-fillers in the dynamic facts is small (at most 10), and only

a small number of instances of each predicate (- 3) may be co-active at the same time.

The temporal approach also predicts that the depth to which an agent may reason rapidly

but systematically is bounded. All these constraints are motivated by biological considera-

tions. For example, each entity participating in dynamic bindings occupies a distinct phase

and hence, the number of distinct entities that can occur as role-fillers in dynamic facts

cannot exceed [rmad/wJ, where ,rm,,a is the maximum delay between consecutive firings of

synchronous cell-clusters, and w equals the allowable jitter in the firing times of synchronous

cell-clusters.

Henderson (1994) has developed an on-line parser for English using a SHRUTI-like archi-

tecture. The parser's speed is independent of the size of the grammar and it can recover

the structure of arbitrary long sentences as long as the dynamic state required to parse the
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sentence does not exceed the capacity of the parser's working memory. The parser shows

that the constraints on the working memory help explain several properties of human parsing

involving long distance dependencies, garden path effects and our limited ability to deal with

center-embedding.

3.3. Significance of structure

The representational and inferential power of structured connectionist systems such as SHRUTI

and their ability to draw inferences in parallel is directly attributable to their use of structured

representations. Any system that uses fully distributed representations will be incapable of

representing multiple dynamic facts and applying multiple rules simultaneously. Attempts

to develop distributed systems to handle relations invariably en ! up positing several distinct

banks - one for each role - thereby stepping away from a fully distributed mode, or fall

back on seriality. It is not surprising that distributed systems such as DCPS (Touretzky and

Hinton, 1988) have extremely limited capacity for encoding dynamic structurcs and are serial

at the level of rule-application.

3.4. Learning in structured networks

The models discussed thus far did not address the issue of learning in detail (though an

outline of how rule-learning might occur in a SHRUTI-like system appears in (Shastri and

Ajjanagadde, 1993)). Regier's (1992) model for learning the lexical semantics of natural

language spatial terms provides a concrete example of learning within the structured con-

nectionist paradigm. The model observes movies of simple 2-dimensional objects moving

relative to one another - where each movie is labeled as an example of some spatial term

from a natural language - and learns the association between the label (word) and the

event/relation they describe. The model succesfully learned several spatial terms for diverse

natural languages. The model includes structured network components that reflect prior

constraints about the task as well as the usual "hidden layers", and demonstrates how struc-
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tured connectionist networks can incorporate flexible learning ability and at the same time,

leverage prior structure to achieve tractability.

In addition to incremental learning driven by repeated exposure to a large body of training

data, structured models have also made use of one-shot learning using recruitment learning

schemes (e.g., see (Shastri, 1988) and article by Diederich in (Barnden and Pollack, 1991)).

4. DISCUSSION

Structured connectionism offers a rich framework for developing models of cognition that

are guided by biological, behavioral, and computational constraints. The approach has been

productive and resulted in a number of models that are informed by insights from diverse

disciplies such as computer science, Al, psychology, linguistics and neuroscience. Having

resolved some difficult representational problems, the focus of work is shifting toward the

study of structured adaptive networks that are grounded in perception and action.
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FIGURE CAPTIONS

Figure 1. Encoding of predicates, concepts and the rules Vx,y,z [ g9ve(z,y,z) => own(y,z) ],

Vxy [ buy(x,y) --- own(x,y) ], and Vx,y [ own(x,y) => can-sell(z,y) ].
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Introduction: The dynamic binding problem is a central problem in neural information processing.
During visual processing it takes the familiar form of the segmentation problem and the feature binding
problem - visual processing requires the rapid grouping of information over the spatial extent of an object
and across different feature maps so that features belonging to one object are grouped together and not
confused with those belonging to another. The dynamic binding problem however, is not restricted to
vision and arises in any cognitive activity that requires the rapid instantiation and integration of structured
representations. In particular, it arises in myriad ways during language understanding where dynamic
bindings are required to support among other things, reasoning, syntactic processing, and the integration of
syntactic and semantic structures.

A promising solution to the dynamic binding problem based on temporal synchrony has emerged over
the past few years. The possibility of using synchronous activity of appropriate cells to encode bindings was
suggested several years ago by Malsburg (1981) but the idea has found its full expression more recently with
the development of a range of models that use temporal synchrony to carry out segmentation (Malsburg
& Buhmann 1992), object recognition (Hummel & Biederman 1992), extraction of attention maps (Nieber,
Kock, & Rosin 1993), rapid reasoning (Shastri & Ajjanagadde 1993) and parsing of english (Henderson
1994). Emerging data from neurophysiology also seems to suggest that synchronous activity may play a role
in the representation of dynamic bindings in the animal brain (e.g., Eckhorn et al. 1988; Gray & Singer
1989; Kreiter & Singer 1992).

The assumption that dynamic bindings are encoded using synchronous activity has important represen-
tational and processing implications. We examine these implications in the context of rapid reasoning and
identify several specific constraints on the processing of structured information that are suggested by the
use ot synchrony. Work on a model of rapid reasoning and the parsing of english sentences suggests that
interesting cognitive tasks can be solved within these constraints. This suggests that synchrony may be a
sufficiently powerful mechanism for representing dynamic bindings.

Reasoning and the dynamic binding problem: Although the dynamic binding problem un-
derlies most cognitive tasks, the nature of the representational structures instantiated by dynamic bindings
varies from one task to another. Consider the segmentation problem where parts of the input-field have to
be attributed to distinct objects. In this task, dynamic bindings may be best viewed as instantiating sets -
or unary relations. All elements in the input-field that belong to the same object are grouped together to
form a set. Let us examine the sort of representational structures instantiated by dynamic bindings during
rapid (reflexive) reasoning underlying language understanding.2

Assume that an agent's long-term memory (LTM) embodies the following systematic knowledge: 'If
someone gives a recipient an object then the recipient comes to own that object'. Given the above knowledge
an agent would be capable of inferring 'Mary owns a book' on being told 'John gave Mary a book'. A neurally
plausible reasoning system should therefore exhibit the following behavior: If the network's pattern of activity

IThe preparation of this paper was supported by ONR grant N00014-93-1-1149.2Empirical data strongly suggests that inferences required to establish referential and causal coherence occur rapidly and
automatically during text understanding (see e.g., Carpenter & Just 1977). Thus certain kinds of inferences can be drawn
very rapidly - within a few hundred milliseconds. The speed and spontaneity with which we understand language highlights
our ability to perform such inferences without conscious effort - as though they were a reflexve response of our cognitive
apparatus. In view of this we have described such reasoning as reflexive.

1



is initialized to represent 'John gave Mary a book' then very soon, its activity should evolve to include the
representation of 'Mary owns a book'.

A network must solve several technical problems in order to incorporate the above behavior. Before
discussing these problems let us introduce some notation. A specific event such as 'John gave Mary a book'
can be viewed as an instance of the three place relation give with roles: giver, recipient, and give-object and
expressed as the fact give(John, Mary, a-book). The systematic rule-like knowledge given above about giving
and owning may be succinctly expressed as: (1) give(z,y,z) =* oum(y,z), wherein own is a two place relation
with roles: owner and own-object and '=' informally means 'leads to'.

Dynamic representation of facts requires dynamic bindings: The reasoning system must be capable
of rapidly representing facts such as give(John, Mary, a-book) as and when they are "communicated" to the
system by other perceptual or linguistic processes and as they arise internally as a result of the reasoning
process. Note that the fact give(John, Mary, a-book) cannot be represented by simply activating the rep-
resentations of the roles giver, recipient, and give-object, and the constituents 'John', 'Mary', and 'a-book',
since such a representation would be indistinguishable from that of give(a-book, Mary, John). This fact, like
any other instantiation of an n-ary relation, is a composite structure wherein each constituent fills a distinct
role in a relation. Consequently the representation of such as fact requires the representation of appropriate
bindings between the roles of the relation and its fillers. Thus the dynamic representation of give(John,
Mary, a-book) requires the creation of dynamic bindings (giver=John, recipient=Mary, give-object=a-book).

The multiple-instantiation problem: Reasoning often requires the simultaneous activation of more than
one fact pertaining to the same relation. For example, the system may have to encode give(John, Mary,
a-book) and give(Mary, Tom,a-car) at the same time. A reasoning system must be capable of keeping multiple
instantiations of the same relation active without cross-talk between instantiations.

Reasoning involves systematic propagation of dynamic bindings: Another problem concerns the dy-
namic generation of inferred facts. For example, starting with a dynamic representation of give(John, Mary,
a-book) the state of a network encoding rule (1) should evolve rapidly to include the dynamic representation
of the inferred fact: own(Mary, a-book). Generating inferred facts involves the systematic propagation of dy-
namic bindings in accordance with various rules embodied in the system. The rule give(x, V, z) =* own(y, z)
specifies that a give event leads to an own event wherein the recipient of a give event corresponds to the
owner of an own event and the give-object of a give event corresponds to the own-object of an own event.
Thus the application of this rule in conjunction with the instance give(John, Mary, a-book) should create an
instance of own with bindings (owner=Mary, own-object=a-book).

Long-term facts as temporal-pattern matchers: In addition to encoding domain rules, the reasoning
system must also be capable of encoding facts in its LTM and using them during recall, recognition, query
answering, and reasoning. For example, a reasoning system should be capable of encoding the fact 'John
bought a Rolls-Royce' in its LTM and using it to rapidly answer queries such as 'Did John buy a Rolls-
Royce?' and 'Does John own a car?' Observe that a fact in LTM should store the associated bindings
as static bindings within a long-term structure which can interact with dynamic bindings and detect the
occurrence of dynamic bindings that match the stored static bindings.

Parsing and the dynamic binding problem: In addition to reasoning, language understanding requires
a solution to the dynamic binding problem for syntactic processing and the dynamic linking of syntactic and
semantic structures. In particular, parsing requires the extraction of constituents in a sequence of words
and determining the appropriate place of these constituents in the overall phrase structure of the sentence.
From the point of view of the representation and processing of dynamic bindings one can draw the following
analogy between parsing and reasoning: non-terminals of the underlying grammar correspond to 'entities' in
the reasoning system, structural relations among non-terminals such as 'dominates' and 'precedes' correspond
to 'relations', grammatical constraints and phrase structure combination operators correspond to 'rules', and
the representation of the phrase structure during the parsing process corresponds to the collection of 'dynamic
facts' active in the network's state of activation.

Overview of a model of reflexive reasoning: We have developed - SHRUTI - a computational
model of reflexive reasoning which incorporates solutions to the problems discussed above. SHRUTI can
encode a large number of specific facts and general rules involving n-ary relations as well as sub/super
ordinate relations between concepts and perform a broad class of reasoning with extreme efficiency. It
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solves the dynamic binding problem by maintaining and propagating dynamic bindings using synchronous
firing of appropriate nodes. The dynamic fact 'John gave Mary a book' is represented in SHRUTI by the
clusters for 'John' and 'giver' firing in synchrony; the clusters for 'Mary' and 'recipient' firing in synchrony;
and the clusters for an instance of 'book' and 'given-object' firing in synchrony. The view of information
processing implied by SHRUTI is one where i) reasoning is the transient but systematic propagation of a
rhythmic pattern of activity, ii) each entity in the dynamic memory is a phase in the above rhythmic
activity, iii) dynamic bindings are represented as the synchronous firing of appropriate nodes, iv) rules are
interconnection patterns that cause the propagation and transformation of rhythmic patterns of activity, and
v) long-term facts are subnetworks that act as temporal pattern matchers and become active when certain
cell-clusters fire synchronously.

The details of the model may be found in (Shastri & Ajjanagadde 1993). In brief, we posit that each
n-place relation be encoded as a bank of nodes containing n role nodes, a collector node and an enabler
node. Here 'node' refers to an idealized computational device which corresponds to a small cluster of cells.
A rule is encoded by linking the roles of the antecedent and consequent relations in accordance with the
correspondence between roles specified in the rule. For example, the rule give(x,y,z) => own(y,z) is encoded
by connecting the roles recipient and give-obj of the relation give to the roles owner and own-obj of the
relation own, respectively. By virtue of the interconnections between role nodes of give and own, the state of
activation resulting from the pattern of activation for give(John, Mary, a-book) leads to a activation pattern
wherein the roles owner and own-object start firing in synchrony with recipient and give-object respectively,
and hence, with Mary and a-book respectively. Thus starting with a pattern containing the dynamic fact
give (John, Mary, a-book), the network state evolves such that the pattern of activation includes the dynamic
fact own (Mary, a-book). The key assumption here is that if there is a link from node A to node B, the
firing of A will lead to a synchronous firing of B. Note that the time taken to generate a chain of inference
is independent of the total number of rules and facts and is just equal to 1 * a where I equals the length
of the chain of inference, a equals the time required for connected nodes to synchronize. If we assume a
plausible value of a (under 100 milliseconds), SHRUTI demonstrates that it is possible for a system of simple
computing elements to encode millions of rules and facts and draw interesting multiple-step inferences within
a few hundred milliseconds.

SHRUTI can also encode long-term facts and a type hierarchy. The latter allows reference to categories as
well as instances in rules, facts, and queries and the encoding of context sensitive rules such as: (walk-into(xy)
=: hurt(x); but only in the context where the fillers of the two roles of walk-into have the feature solid). In
general, the expressive power of SHRUTI is sufficient to encode knowledge structures such as schemas, frames,
productions, and if-then rules.

Constraints on reflexive processing predicted by SHRUTI: We describe some of the repre-
sentational and processing constraints and predictions that follow from our attempt at engineering a reflexive
reasoning system based on temporal synchrony. The constraints and predictions relate to (i) the capacity
of the 'working memory' underlying reflexive processing, (ii) bounds on the depth of reasoning and differ-
ences in the time course of associative priming versus systematic reasoning, (iii) the form of rules that may
participate in reflexive processing, and (iv) the need for a large capacity memory capable of storing relation
instances in around 1 second.

Working memory underlying reflexive processing: Dynamic bindings, and hence, dynamic (active)
facts are represented in SHRUTI as a rhythmic pattern of activity over nodes in the LTM network. In functional
terms, this transient state of activation holds information temporarily during an episode of reflexive reasoning
and corresponds to the working memory underlying reflexive reasoning (WMRR). Note that WMRR is just
the state of activity of the LTM network and not a separate buffer. Also note that the dynamic facts
represented in the WMRR during an episode of reflexive reasoning should not be confused with the small
number of short-term facts an agent may overtly keep track of during reflective processing and problem
solving. WMRR should not be confused with the short-term memory implicated in various memory span
tasks (Baddeley 1986). In our view, in addition to the overt working memory, there exist as many "working
memories" as their are major processes in the brain.

Our work predicts that the capacity of WMRR is very large but at the same time it is constrained in
critical ways. Thus the number of dynamic facts that can potentially be present in the working memory at
any given time can be as high as k2 * R where k2 is the multiple instantiation constant (see below) and R
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is the number of relations known to the agent.

Bound on the number of distinct entities referenced in WMRR During an episode of reflexive
reasoning, each entity involved in dynamic bindings occupies a distinct phase in the rhythmic pattern of
activity. Hence the number of distinct entities that can occur as role-fillers in the dynamic facts represented
in the working memory cannot exceed irmaz/w where 7r,,,, is the maximum delay between two consecutive
firings of cell-clusters involved in synchronous firing and w equals the width of the window of synchrony
- i.e., the maximum allowable lead/lag between the firing of synchronous cell-clusters. If we assume that
neurally plausible value of ir,maz is about 30 ms. and a conservative estimate of w is around 6 ms. we are
lead to the following prediction: As long as the number of distinct entities referenced by the dynamic facts in
the working memory is five or less, there will essentially be no cross-talk among the dynamic facts. If more
entities occur as role-fillers in dynamic facts, the window of synchrony w would have to shrink appropriately
in order to accommodate all the entities. As w shrinks, the possibility of cross-talk between dynamic bindings
would increase until eventually, the cross-talk would become excessive and disrupt the system's ability to
perform systematic reasoning. The exact bound on the number of distinct entities that may fill roles in
dynamic facts would depend largest and smallest feasible values of ira: and w respectively. However we can
safely predict that the upper bound on the maximum number of entities participating in dynamic bindings
can be no more than 10 (perhaps less).

Bound on the multiple instantiation of relations: The capacity of WMRR is also limited by the
constraint that each relation can only be instantiated a bounded number of times (k2) during an episode
of reasoning. In other words the working memory can contain at most k2 dynamic facts per relation (we
refer to K2 as the multiple instantiation constant). Note that the value of k2 need not be the same for all
relations; some critical relations may have a higher value of k2 while some other relations may have a smaller
value. The cost of maintaining multiple instantiations turns out to be significant in terms of space and time.
For example, the number of nodes required to encode a rule for backward reasoning is proportional to the
square of k2. Thus a system that can represent three dynamic instantiations of each relation may have up to
nine times as many nodes as a system that can only represent one instantiation per relation. Furthermore,
the worst case time required for propagating multiple instantiations of a relation also increases by a factor
of k2 . In view of the additional space and time costs associated with multiple instantiation, and given the
necessity of keeping these resources within bounds in the context of reflexive processing, we predict that the
value of k2 is quite small, perhaps no more than 3.

Bound on the depth of the chain of reasoning: Consider the propagation of synchronous activity along
a chain of role ensembles during an episode of reflexive reasoning. Two things might happen as activity
propagates along the chain of role ensembles. First, the lag in the firing times of successive ensembles may
gradually build up due to the propagation delay introduced at each level in the chain. Second, the dispersion
within each ensemble may gradually increase due to the variations in the propagation delay of links and the
noise inherent in synaptic and neuronal processes. While the increased lag along successive ensembles will
lead to a 'phase shift', and hence, binding confusions, the increased dispersion of activity within successive
ensembles will lead to a gradual loss of binding information. Increased dispersion would mean less phase
specificity, and hence, more uncertainty about the role's filler. Due to the increase in dispersion along the
chain of reasoning, the propagation of activity will correspond less and less to a propagation of role bindings
and more and more to an associative spread of activation. For example, the propagation of activity along a
chain of rules such as: PI(x,y,z) =:. P2(x,y,z) =* . . . Pn(x,y,z) due to a dynamic fact P1(a,b,c) may lead to
a state of activation where all one can say about Pn is this: there is an instance of Pn which involves the
entities a, b, and c, but it is not clear which entity fills which role of Pn. In view of the above, it follows that
the depth to which an agent may reason during reflexive reasoning is bounded. In other words, an agent may
be unable to make a prediction (or answer a query) - even when the prediction (or answer) logically follows
from the knowledge encoded in the LTM - if the length of the derivation leading to the prediction (or the
answer) exceeds this bound. It should be possible to relate the bound on the depth of reflexive reasoning to
specific physiological parameters and pointers to relevant data are welcome.

Form of rules that may participate in reflexive reasoning: Using complexity theory it can be shown
that during backward reasoning (i.e., query answering) it is not possible to make use of rules containing
equality constraints among antecedent, roles unless (i) such roles map to a consequent role in the rule and (ii)
the consequent role get bound during the query answering process. A similar constraint applies to forward
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(predictive) reasoning. These constraints predict that certain queries cannot be answered in a reflexive
manner even though the corresponding predictions can be made reflexively. For example, consider an agent
whose LTM includes the rule 'if x loves y and y loves z then x is jealous of z', and the long-term facts 'John
loves Mary' and 'Mary loves Tom'. We predict that if this agent is asked 'Is John jealous of Tom?', she
will be unable to answer the query in a reflexive manner. Note that the antecedent of the rule includes the
equality condition: the second role of one instance of 'loves' should equal the first role of the other instance
of 'love'. Hence, answering this question will require deliberate and conscious processing unless the relevant
long-term facts are active in the WMRR for some reason at the time the query is posed. However, an agent
who has the above rule about love and jealousy in its LTM would be able infer 'John is jealous of Tom' in a
reflexive manner, on being 'told' 'John loves Mary' and 'Mary loves Tom'.

Conclusion: The representational and inferential machinery of SHRUTI is fairly general and can be
applied to other problems in cognition that require the expressive power of n-ary relations and depend on
the rapid and systematic interaction between long-term and dynamic structures. Thus the constraints and
predictions discussed above may carry over to other domains. For example, Henderson (1994) has adopted
the SHRUTI model to design a parser of english whose speed is independent of the size of the grammar and
that can recover the structure of arbitrary long sentences as long as the dynamic state required to parse
the sentence does not exceed the bounds on the parser's working memory. The parser's limited working
memory explains a range of linguistic phenomena pertaining to our limited ability to deal with long distance
dependencies, local ambiguity, and center-embedding. It lends evidence to our belief that synchrony may
eventually turn out to be a sufficiently powerful mechanism for representing dynamic bindings.
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